Project description:To gain mechanistic insights into the molecular changes of Caenorhabditis briggsae between the two developmental stages: embryo and larvae
Project description:Different populations of the same species survive different environments through local adaptation. Temperature is one of the most important driving forces that could result in local adaptation. Here, we studied the influence of extreme low temperature on the survival of two genetically and geographically distinct populations of the free-living Caenorhabditis briggsae. We found that Caenorhabditis briggsae strains of temperate origin had a cold resistant phenotype, while those originating from a tropical climate had reduced survival after cold treatment. Using this phenotypic difference between geographically diverse populations as a model for how species adapt to their local environment, we then analyzed the transcriptional profiles of two Caenorhabditis briggsae strains of tropical and temperate origin to find genes that are involved in survival after extreme cold. In summary, the response to the extreme low temperature that clearly distinguishes the temperate and tropical Caenorhabditis briggsae strains could serve as an excellent example for studying local adaption of species that show genetic separation associated with their geographical distribution.
Project description:This project defines the transcriptomes of XO (male) and XX (female or mutant pseudo-female) Caenorhabditis nematodes. The data allow the overall composition and sexual regulation of the transcriptome within a single species to be determined. In addition, the five related species studied allow meta-comparisons between them. Because two of the five (C. elegans and C. briggsae) produce a self-fertile XX hermaphrodite, while the XX sex in the remaining three (C. japonica, C. remanei, and C. brenneri) are true females, the data are particularly useful for inferring effects of sexual mode on genome-wide gene expression. L4 larvae and adults were pooled for each sex for five species (C. elegans, C. briggsae, C. japonica, C. brenneri, and C. remanei). Each of these 10 species-sex combinations was replicated three times, for a total of 30 samples.