Project description:Diagnostic primer extension assay to serotype Streptococcus pneumoniae. Assay validation. Background: Monitoring of Streptococcus pneumoniae serotype epidemiology is essential since serotype replacement is a concern when introducing new polysaccharide-conjugate vaccines. To simplify S. pneumoniae serotyping, a novel PCR-based automated microarray assay was developed to assist in the tracking of the serotypes. Results: Autolysin (lytA), pneumolysin (ply) and eight genes located in the capsular operon (cps) were amplified using multiplex PCR. This step was followed by a tagged fluorescent primer extension step targeting serotype-specific polymorphisms. The tagged primers were then hybridized to a microarray. Results were exported to an expert system that transforms genetic typing data into capsular serotype identification. The assay was validated on 166 cultured S. pneumoniae samples from 63 different serotypes as determined by the Quellung method. In addition, the assay was tested on clinical specimens including 43 cerebrospinal fluid samples from patients with meningitidis and 59 nasopharyngeal aspirates from bacterial pneumonia patients. The assay presented with no cross-reactivity for 24 relevant bacterial species found in these types of samples. The limit of detection for serotyping and S. pneumoniae detection was 100 genome equivalent per reaction. Conclusion: This automated assay is amenable to clinical testing and does not require any culturing of the samples. The assay will be useful for the evaluation of serotype prevalence changes after new conjugate vaccines introduction.
Project description:Diagnostic primer extension assay to serotype Streptococcus pneumoniae. Assay validation. Background: Monitoring of Streptococcus pneumoniae serotype epidemiology is essential since serotype replacement is a concern when introducing new polysaccharide-conjugate vaccines. To simplify S. pneumoniae serotyping, a novel PCR-based automated microarray assay was developed to assist in the tracking of the serotypes. Results: Autolysin (lytA), pneumolysin (ply) and eight genes located in the capsular operon (cps) were amplified using multiplex PCR. This step was followed by a tagged fluorescent primer extension step targeting serotype-specific polymorphisms. The tagged primers were then hybridized to a microarray. Results were exported to an expert system that transforms genetic typing data into capsular serotype identification. The assay was validated on 166 cultured S. pneumoniae samples from 63 different serotypes as determined by the Quellung method. In addition, the assay was tested on clinical specimens including 43 cerebrospinal fluid samples from patients with meningitidis and 59 nasopharyngeal aspirates from bacterial pneumonia patients. The assay presented with no cross-reactivity for 24 relevant bacterial species found in these types of samples. The limit of detection for serotyping and S. pneumoniae detection was 100 genome equivalent per reaction. Conclusion: This automated assay is amenable to clinical testing and does not require any culturing of the samples. The assay will be useful for the evaluation of serotype prevalence changes after new conjugate vaccines introduction. 166 quellung serotyped strains and two negative controls
Project description:Purpose: We recently reported that isogenic deletion of lysine decarboxylase (ΔcadA/SP_0916), an enzyme that catalyzes the biosynthesis of polyamine cadaverine in Streptococcus pneumoniae TIGR4 results in loss of capsular polysaccharide (CPS), which constitutes a novel mechanism of regulation of CPS. Here, we conducted RNA-Seq to elucidate molecular mechanisms of CPS regulation in polyamine synthesis impaired pneumococci. Result: Significantly differentially expressed genes in ΔcadA represent pneumococcal pathways involved in the biosynthesis of precursors for CPS and peptidoglycan. Conclusion: We establish a possible link and interchange between two cellular processes such as high energy demanding capsule production and oxidative stress responses in polyamine synthesis impaired pneumococci (ΔcadA).
Project description:This SuperSeries is composed of the following subset Series: GSE31815: ccpA mutant compared to D39 wild-type in Streptococcus pneumoniae in CDM + Glucose at MID-log growth phase GSE31816: ccpA mutant compared to D39 wild-type in Streptococcus pneumoniae in CDM + GLucose at transition-phase of growth (TS) GSE31817: ccpA mutant compared to D39 wild-type in Streptococcus pneumoniae in CDM + Galactose at MID-log growth phase GSE31818: ccpA mutant compared to D39 wild-type in Streptococcus pneumoniae in CDM + galactose at transition-phase of growth (TS) Refer to individual Series
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes, 5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. This submission contains the results from five Streptococcus pneumoniae strains (4496, 947, 4559, 180-2, 180-15) grown under three conditions: RPMI supplemented with glucose, RPMI supplemented with galactose, or pooled human sera. Six replicates of each condition were subjected to shotgun proteomics and label-free MS1-based quantitation.
Project description:Treatment of pneumococcal infections is limited by antibiotic resistance and exacerbation of disease by bacterial lysis releasing pneumolysin toxin and other inflammatory factors. We identified a novel peptide in the Klebsiella pneumoniae secretome, which enters Streptococcus pneumoniae via its AmiA-AliA/AliB permease. Subsequent downregulation of genes for amino acid biosynthesis and peptide uptake was associated with reduction of pneumococcal growth in defined medium and human cerebrospinal fluid, irregular cell shape, decreased chain length and decreased genetic transformation. The bacteriostatic effect was specific to S. pneumoniae and Streptococcus pseudopneumoniae with no effect on Streptococcus mitis, Haemophilus influenzae, Staphylococcus aureus or K. pneumoniae. Peptide sequence and length were crucial to growth suppression. The peptide reduced pneumococcal adherence to primary human airway epithelial cell cultures and colonization of rat nasopharynx, without toxicity. We also analysed the effect of peptide on the proteome of S. pneumoniae. We found alteration of the proteome by the peptide with some proteins turned on or off in line with the transcriptomic changes. We therefore identified a peptide with potential as a therapeutic for pneumococcal diseases suppressing growth of multiple clinical isolates, including antibiotic resistant strains, while avoiding bacterial lysis and dysbiosis.
Project description:Transcriptome comparison of the Streptococcus pneumoniae D39 wild-type grown in CDM Plus 0mM Zn2+ to grown in CDM plus 0.2 mM Zn2+.