Project description:Development of a primary tumor gene expression profile that can predict the presence of circulating tumor cells in the blood of breast cancer patients. The detection of circulating tumor cells (CTCs) in the peripheral blood and microarray gene expression profiling of the primary tumor are two promising new technologies able to provide valuable prognostic data for patients with breast cancer. In the current study, we aimed to develop a novel profile which provided independent prognostic data by building a signature predictive of CTC status rather than outcome. Seventy-two primary breast cancer tumor have been analyzed against a breast cancer reference pool.
Project description:The CTC-iChip microfluidic device [PMID: 23552373 ] enables isolation of rare viable circulating tumor cells (CTCs) directly from whole blood specimens of patients with cancer. Reanalysis of freshly isolated CTC from 31 women with hormone receptor positive metastatic breast cancer.
Project description:Circulating tumor cells (CTCs) and disseminated tumour cells with mesenchymal traits are difficult to detect by epithelial marker proteins. Particularly, triple negative breast cancers (TNBC) that are prone to therapy failure release a subpopulation of circulating tumour cells (CTCs) with mesenchymal traits. To provide tools that support their detection and analysis, the cell line BC-M1 established from disseminated tumour cells in the bone marrow of a breast cancer patient and a bone metastasis subline of MDA-MB-231 were analysed. Mass spectrometry analysis revealed high levels of CUB domain-containing protein 1 (CDCP1) in BC-M1. CDCP1 was found in other carcinoma cell lines (MDA-MB-231, MDA-MB-468) and other DTC cell lines (LC-M1, PC-E1) as well. Peripheral blood mononuclear cells were virtually negative for CDCP1 by Western Blot and immunofluorescent staining. Presence of CDCP1 in CTCs was confirmed by CellSearch. Here, CDCP1 positive CTCs were detected in eight of 30 analysed breast cancer patients. For the isolation of CTCs from the blood of breast cancer patients, we established a sandwich magnetic-activated cell sorting (MACS). The extracellular domain of CDCP1 served for cell catching and the cytoplasmic domain of CDCP1 for immunofluorescent detection of CDCP1 in CTCs. We showed that the MACS approach is suitable for the isolation of EpCam/keratin negative breast cancer cells from the blood and isolated CDCP1 positive CTCs from breast cancer patients by MACS. Hence, our approach is particularly suited for the detection and isolation of CTCs from TNBC when low EpCam or keratin levels limit the application of conventional approaches.
Project description:Development of a primary tumor gene expression profile that can predict the presence of circulating tumor cells in the blood of breast cancer patients. The detection of circulating tumor cells (CTCs) in the peripheral blood and microarray gene expression profiling of the primary tumor are two promising new technologies able to provide valuable prognostic data for patients with breast cancer. In the current study, we aimed to develop a novel profile which provided independent prognostic data by building a signature predictive of CTC status rather than outcome.
Project description:Two TMT-6 plex experiments were performed to quantify two states of breast cancer circulating tumor cells (CTCs) from 3 patients. The data was acquired on an Orbitrap Fusion using the SPS-MS3 method.
Project description:Immunomagnetic enrichment and flow cytometric isolation of breast cancer circulating tumor cells (CTCs) for genomic characterization