Project description:Age-dependent changes of the gut-associated microbiome have been linked to increased frailty and systemic inflammation. This study found that age-associated changes of the gut microbiome of BALB/c and C57BL/6 mice could be reverted by co-housing of aged (22 months old) and adult (3 months old) mice for 30-40 days or faecal microbiota transplantation (FMT) from adult into aged mice. This was demonstrated using high-throughput sequencing of the V3-V4 hypervariable region of bacterial 16S rRNA gene isolated from faecal pellets collected from 3-4 months old adult and 22-23 months old aged mice before and after co-housing or FMT.
Project description:5 month old Female Fisher transgenic 344-AD (Tg-AD) rats expressing human Swedish amyloid precursor protein (APPsw) and Δ exon 9 presenelin-1 (PS1ΔE9) were treated with BT-11 (cat. no. HY-102013, MCE) at 8.5 mg/kg body weight administered in rodent chow. Following 6 months of BT-11 treatment, rats (11 months of age) were tested for cognitive behavior prior to sacrificing. Hippocampal Brain region were dissected and RNA sequencing (RNAseq) analyses was done on the Isolated sample. Taken together we showed that BT-11 treatment enriched pathways for females included passive transmembrane transporter activity, G protein-coupled receptor activity, G protein-coupled peptide receptor activity.
Project description:The human gut microbiota harbors methanogens represented by the dominant archaeon, Methanobrevibacter smithii, a polyphyletic group of acetogens, and sulfate-reducing bacteria. Defining their roles in the H2-economy of the gut has potential therapeutic importance for modulating the efficiency of fermentation of dietary components. We quantified methanogens in fecal samples from 40 healthy adult female monozygotic(MZ) and 28 dizygotic(DZ) twin pairs, analyzed bacterial 16S rRNA datasets generated from their fecal samples to identify taxa that co-occur with methanogens, sequenced the genomes of 20 M. smithii strains isolated from families of MZ and DZ twins, and performed RNA-Seq of a subset of strains to identify their responses to varied formate concentrations. The concordance rate for methanogen carriage was significantly higher for MZ versus DZ twin pairs. Co-occurrence analysis revealed 22 bacterial species-level taxa positively correlated with methanogens: all but two were members of the Clostridiales, with several being, or related to, known hydrogen-producing and -consuming bacteria. The M. smithii pan-genome contains 987 genes conserved in all strains, and 1860 variably represented genes. Strains from MZ and DZ twin pairs had a similar degree of shared genes and SNPs, and were significantly more similar than strains isolated from mothers or members of other families. The 101 adhesin-like proteins(ALPs) in the pan-genome (45±6/strain) exhibit strain-specific differences in expression and responsiveness to formate. We hypothesize that M. smithii strains use their different repertoires of ALPs to create diversity in their metabolic niches, by allowing them to establish syntrophic relationships with bacterial partners with differing metabolic capabilities and patterns of co-occurrence These strains were isolated from human feces, but they are in pure culture now. All the information about each species is associated with the genome accession number Fecal samples from 40 healthy adult female monozygotic(MZ) and 28 dizygotic(DZ) twin pairs, analyzed bacterial 16S rRNA datasets generated from their fecal samples to identify taxa that co-occur with methanogens, sequenced the genomes of 20 M. smithii strains isolated from families of MZ and DZ twins, and performed RNA-Seq of a subset of strains to identify their responses to varied formate concentrations. Strains of Methanobrevibacter smithii were grown in vitro (modified MBC media) to mid-log phase, at 37°C in serum bottles pressurized with 80% hydrogen, 20% CO2 gasses at 30psi. Cells were harvested by centrifugation, and DNA was isolated by phenol-chloroform and ethanol precipitation.
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.
Project description:A rapid ex vivo microbiome assay and metaproteomics approach was used for rapid evaluation of the cultivability of bio-banked live microbiota, which shows minimal detrimental influences of long-term freezing in deoxygenated glycerol buffer on the cultivability of fecal microbiota.
Project description:Recent evidence suggests an important role of the gut microbiome in early life on immune cell entraining. Using two independent transgenic (Tg) lines of Alzheimer’s disease, we have demonstrated that life-long antibiotic (ABX)-perturbation of the gut microbiome is associated with reduced amyloid beta (Ab) plaque pathology and microglial phenotypes in male mice. Furthermore, fecal microbiota transfer (FMT) from age-matched APPPS1-21 Tg mice into long-term ABX-treated male APPPS1-21 mice partially restored amyloidosis and microgliosis, thus establishing causality. in the current studies, we planned to investigate the transcriptome profiles in APPPS1-21 mice treated with short-term abx (PND14-21) compared with vehicle treated groups in genotype-, sex- and time -dependent manner. Most importantly, we also investigated if fecal microbiota transplants from age-matched Tg male mice into short-term abx (PND14-21)-treated male mice restores brain transcriptomes to that of obsreved in vehicle-treated male mice at 9 weeks of age.
Project description:In rodents, brown adipose tissue (BAT) contributes to whole body energy expenditure and low BAT activity is related to hepatic fat accumulation, partially attributable to the gut microbiome. Little is known of these relationships in humans. In adults (n=60), we assessed hepatic fat and cold-stimulated BAT activity utilizing magnetic resonance imaging and the gut microbiome with 16S sequencing. We transplanted gnotobiotic mice with feces from humans to assess the transferability of BAT activity and NAFLD through the microbiome. Individuals with NAFLD (n=29) had lower BAT activity than those without and BAT activity was inversely related to hepatic fat. Although the fecal microbiome was different in those with NAFLD, no differences were observed in relation to BAT activity and neither of these phenotypic traits were transmissible through fecal transplant to gnotobiotic mice. Thus, low BAT activity is associated with hepatic steatosis but this is not mediated through the gut microbiota.
Project description:On going efforts are directed at understanding the mutualism between the gut microbiota and the host in breast-fed versus formula-fed infants. Due to the lack of tissue biopsies, no investigators have performed a global transcriptional (gene expression) analysis of the developing human intestine in healthy infants. As a result, the crosstalk between the microbiome and the host transcriptome in the developing mucosal-commensal environment has not been determined. In this study, we examined the host intestinal mRNA gene expression and microbial DNA profiles in full term 3 month-old infants exclusively formula fed (FF) (n=6) or breast fed (BF) (n=6) from birth to 3 months. Host mRNA microarray measurements were performed using isolated intact sloughed epithelial cells in stool samples collected at 3 months. Microbial composition from the same stool samples was assessed by metagenomic pyrosequencing. Both the host mRNA expression and bacterial microbiome phylogenetic profiles provided strong feature sets that clearly classified the two groups of babies (FF and BF). To determine the relationship between host epithelial cell gene expression and the bacterial colony profiles, the host transcriptome and functionally profiled microbiome data were analyzed in a multivariate manner. From a functional perspective, analysis of the gut microbiota's metagenome revealed that characteristics associated with virulence differed between the FF and BF babies. Using canonical correlation analysis, evidence of multivariate structure relating eleven host immunity / mucosal defense-related genes and microbiome virulence characteristics was observed. These results, for the first time, provide insight into the integrated responses of the host and microbiome to dietary substrates in the early neonatal period. Our data suggest that systems biology and computational modeling approaches that integrate “-omic” information from the host and the microbiome can identify important mechanistic pathways of intestinal development affecting the gut microbiome in the first few months of life. KEYWORDS: infant, breast-feeding, infant formula, exfoliated cells, transcriptome, metagenome, multivariate analysis, canonical correlation analysis 12 samples, 2 groups