Project description:We previously showed that the proteasome inhibitor bortezomib (Velcade) induces cell death in a subset of human bladder cancer cell lines. Heat shock protein 72 kDa (Hsp72) is the major cytosolic stress-inducible molecular chaperone, and is thought to protect cells from proteasome inhibition. Here, using whole genome mRNA expression profiling, we identify isoform-specific expression of Hsp72 within a heterogeneous panel of bladder cancer cell lines. Bortezomib induced strong upregulation of both the HSPA1A and HSPA1B isoforms of Hsp72 in 253J B-V and SW780 (HSPA1A-high) cells, whereas only HSPA1B isoform expression was induced in UM-UC10 and UM-UC13 (HSPA1A-low) cells. Bortezomib stimulated the binding of heat shock factor-1 (HSF1) to the HSPA1A promoter much more efficiently in 253JB-V cells than in UM-UC13, but other HSF1 transcriptional targets were induced in all of the cell lines, implicating a specific defect in HSPA1A induction. Methylation-specific PCR revealed that the HSPA1A promoter was selectively methylated in the HSPA1A-low cell lines (UM-UC10 and UM-UC13), and exposure to the chromatin demethylating agent 5-aza-2'-deoxycytidine restored HSPA1A expression. Overexpression of Hsp72 promoted bortezomib resistance in the UM-UC10 and UM-UC13 cells, whereas transient knockdown of HSPA1B sensitized these cells to bortezomib. Exposure to the chemical HSF1 inhibitor KNK-437 promoted bortezomib sensitivity in the 253J B-V cells. Finally, shRNA-mediated stable knockdown of Hsp72 in 253J B-V promoted sensitivity to bortezomib both in vitro and in vivo. Together, our results suggest that a subset of human bladder cancer cells possess epigenetic modifications that shut off the HSPA1A promoter and increases dependency on the HSPA1B isoform to maintain Hsp72 expression. Our data also support the targeting of HSF1 or Hsp72 for use as tools to enhance bortezomib sensitivity in solid tumors.
Project description:We previously showed that the proteasome inhibitor bortezomib (Velcade) induces cell death in a subset of human bladder cancer cell lines. Heat shock protein 72 kDa (Hsp72) is the major cytosolic stress-inducible molecular chaperone, and is thought to protect cells from proteasome inhibition. Here, using whole genome mRNA expression profiling, we identify isoform-specific expression of Hsp72 within a heterogeneous panel of bladder cancer cell lines. Bortezomib induced strong upregulation of both the HSPA1A and HSPA1B isoforms of Hsp72 in 253J B-V and SW780 (HSPA1A-high) cells, whereas only HSPA1B isoform expression was induced in UM-UC10 and UM-UC13 (HSPA1A-low) cells. Bortezomib stimulated the binding of heat shock factor-1 (HSF1) to the HSPA1A promoter much more efficiently in 253JB-V cells than in UM-UC13, but other HSF1 transcriptional targets were induced in all of the cell lines, implicating a specific defect in HSPA1A induction. Methylation-specific PCR revealed that the HSPA1A promoter was selectively methylated in the HSPA1A-low cell lines (UM-UC10 and UM-UC13), and exposure to the chromatin demethylating agent 5-aza-2'-deoxycytidine restored HSPA1A expression. Overexpression of Hsp72 promoted bortezomib resistance in the UM-UC10 and UM-UC13 cells, whereas transient knockdown of HSPA1B sensitized these cells to bortezomib. Exposure to the chemical HSF1 inhibitor KNK-437 promoted bortezomib sensitivity in the 253J B-V cells. Finally, shRNA-mediated stable knockdown of Hsp72 in 253J B-V promoted sensitivity to bortezomib both in vitro and in vivo. Together, our results suggest that a subset of human bladder cancer cells possess epigenetic modifications that shut off the HSPA1A promoter and increases dependency on the HSPA1B isoform to maintain Hsp72 expression. Our data also support the targeting of HSF1 or Hsp72 for use as tools to enhance bortezomib sensitivity in solid tumors. RNA was isolated from cells using the TRIzol Reagent (Invitrogen/ Life Technologies, Grand Island, NY), followed by cleanup with RNeasy Mini kits (Qiagen, Germantown, MD). RNA was used for the synthesis of biotin-labeled cRNA, which was prepared using the Illumina RNA amplification kit (Ambion/ Life Technologies), and then hybridized to Illumina Human-HT12 (Illumina, Inc., Hayward, CA) chips. Washed chips were scanned with BeadStation 500x (Illumina) and the signal intensities quantified with BeadStudio (Illumina).
Project description:Genome-wide DNA methylation profiling of parental (native) and 3-bromopyruvate-resistant UM-UC-3 bladder cancer cells. The Illumina Infinium 450k Human DNA methylation Beadchip v1.2 was used to obtain DNA methylation profiles across approximately 450,000 CpGs in treatment-naive and 3-bromopyruvate-resistant UM-UC-3 bladder cancer cells.
Project description:To better understand the molecular mechanisms underlying TYRO3 oncogenic activity in bladder carcinomas, we made use of MGH-U3, RT112 and UM-UC-5 cell lines, which were derived from a human bladder tumor and endogenously expressed the Tyro3 protein, the growth and transformation of these cell lines being dependent on Tyro3. We carried out a gene expression analysis using Affymetrix DNA arrays in this cell line treated or not withTYRO3 siRNAs.
Project description:40 bladder cancer cell lines were profiled with their genome-wide gene expression patterns using Affymetrix HG-U133A chips. Keywords: bladder cancer cell line expression profiling
Project description:PURPOSE: Despite over 70,000 new cases of bladder cancer in the United States annually, patients with advanced disease have a poor prognosis due to limited treatment modalities. We evaluate the role of Aurora A, identified as an upregulated candidate molecule in bladder cancer, in regulating bladder tumor growth. EXPERIMENTAL DESIGN: Gene expression in human bladder cancer samples was evaluated using RNA microarray and reverse-transcriptase PCR. The specific Aurora kinase A inhibitor MLN8237 (Millennium) was used to determine effects on bladder cancer cell growth using in vitro and in vivo models using malignant T24 and UM-UC-3 and papilloma-derived RT4 bladder cells. RESULTS: Urothelial carcinoma upregulates a set of 13 mitotic spindle associated transcripts, as compared to normal urothelium, including MAD2L1 (7.6-fold), BUB1B (8.8-fold), Aurora kinases A (5.6-fold) and Aurora kinase B (6.2-fold). Application of MLN8237 (10nM-1µM) to the human bladder tumor cell lines T24 and UM-UC-3 induced dose-dependent G2 cell cycle arrest, aneuploidy, mitotic spindle abnormalities, and apoptosis. MLN8237 arrested tumor growth when administered orally over 4 weeks in a mouse bladder cancer xenograft model (p<0.05). Finally, in vitro combination of MLN8237 with either paclitaxel or gemcitabine produced schedule-dependent synergistic antiproliferative effects in T24 cells when administered sequentially. CONCLUSIONS: Mitotic spindle checkpoint dysfunction is a common characteristic of human urothelial carcinoma, and can be exploited with pharmacologic Aurora A inhibition. Future studies that explore the mechanisms of spindle checkpoint failure in bladder cancer and evaluate the therapeutic role of Aurora kinases for bladder cancer patients would be of value. Tissue samples with urothelial cell carcinoma from bladder as well as normal references were collected and the gene expression profiles were compared. No technical replicates.
Project description:PURPOSE: Despite over 70,000 new cases of bladder cancer in the United States annually, patients with advanced disease have a poor prognosis due to limited treatment modalities. We evaluate the role of Aurora A, identified as an upregulated candidate molecule in bladder cancer, in regulating bladder tumor growth. EXPERIMENTAL DESIGN: Gene expression in human bladder cancer samples was evaluated using RNA microarray and reverse-transcriptase PCR. The specific Aurora kinase A inhibitor MLN8237 (Millennium) was used to determine effects on bladder cancer cell growth using in vitro and in vivo models using malignant T24 and UM-UC-3 and papilloma-derived RT4 bladder cells. RESULTS: Urothelial carcinoma upregulates a set of 13 mitotic spindle associated transcripts, as compared to normal urothelium, including MAD2L1 (7.6-fold), BUB1B (8.8-fold), Aurora kinases A (5.6-fold) and Aurora kinase B (6.2-fold). Application of MLN8237 (10nM-1µM) to the human bladder tumor cell lines T24 and UM-UC-3 induced dose-dependent G2 cell cycle arrest, aneuploidy, mitotic spindle abnormalities, and apoptosis. MLN8237 arrested tumor growth when administered orally over 4 weeks in a mouse bladder cancer xenograft model (p<0.05). Finally, in vitro combination of MLN8237 with either paclitaxel or gemcitabine produced schedule-dependent synergistic antiproliferative effects in T24 cells when administered sequentially. CONCLUSIONS: Mitotic spindle checkpoint dysfunction is a common characteristic of human urothelial carcinoma, and can be exploited with pharmacologic Aurora A inhibition. Future studies that explore the mechanisms of spindle checkpoint failure in bladder cancer and evaluate the therapeutic role of Aurora kinases for bladder cancer patients would be of value.
Project description:To explore the molecular mechanism underlying NONO-mediated lymphatic metastasis inhibition in bladder cancer, a genome-wide RNA-sequencing was conducted to compare gene expression profiles of UM-UC-3 cells with NONO knockdown and control.
Project description:Bladder cancer stem cells (CSCs) contribute to tumorigenesis, recurrence and chemoresistance of bladder cancer. However, the molecular mechanisms underlying their self-renewal are poorly unknown. Long noncoding RNAs (lncRNAs) act as crucial regulators in a lot of human cancers, yet their potential roles and molecular mechanisms in bladder CSCs are poorly understood. The goal of this study is to identify the differentially expressed lncRNAs in bladder CSCs (UM-UC-3 4th spheres), its two differentiation sublines and bladder non-CSCs (UM-UC-3). Our study reveals that deregulation of lncRNAs is involved in the bladder CSCs.