Project description:The production and consumption of shrimp species create massive amounts of shrimp bio-waste. In this study, shrimp shell waste from Palaemon serratus and Palaemon varians from the Portuguese coast was characterized. Regarding the antioxidant capacity, the obtained values were between 4.7 and 10.4 mg gallic acid equivalents (GAE)/g dry weight (dw) for Total phenolic content (TPC); 3 and 7 mg ascorbic acid equivalents (AAE)/g dw for Ferric reducing antioxidant power assay (FRAP); 0.4 and 1.2 mg Trolox equivalent (TE)/g dw for 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical scavenging (DPPH•); 4 and 11 mg TE/g dw for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity (ABTS•+); and 72 and 130 mg TE/g dw for Oxygen radical absorbance capacity (ORAC). For the antimicrobial activity, shrimp shell waste from P. varians formed inhibition zones between 14 and 23 mm. Total carotenoid content values were in the range of 28 and 134 μg/g dw, and according to their HPLC-PAD profile, β-carotene and astaxanthin contents were between 0.3 and 7.6 μg/g dw and 1.1 and 26.1 μg/g dw, respectively. These studies are critical to recognizing the potential added value of shrimp shell waste as possible colorants and preservatives with antioxidant protection capacity to be used in the food industry.
Project description:The shrimp Palaemon serratus is a coastal decapod crustacean with a high commercial value. It is harvested for human consumption. In this study, we used Illumina sequencing technology (HiSeq 2000) to sequence, assemble and annotate the transcriptome of P. serratus. RNA was isolated from muscle of adults individuals and, from a pool of larvae. A total number of 4 cDNA libraries were constructed, using the TruSeq RNA Sample Preparation Kit v2. The raw data in this study was deposited in NCBI SRA database with study accession number of SRP090769. The obtained data were subjected to de novo transcriptome assembly using Trinity software, and coding regions were predicted by TransDecoder. We used Blastp and Sma3s to annotate the identified proteins. The transcriptome data could provide some insight into the understanding of genes involved in the larval development and metamorphosis. SPECIFICATIONS:[Table: see text].