Project description:In this work, we evaluated the genetic stabilization process, of the intra- (Saccharomyces cerevisiae) and interspecific (S. cerevisiae x Saccharomyces kudriavzevii) hybrids obtained by different non-GMO techniques, under fermentative conditions. Large-scale transitions in genome size, detected by measuring total DNA content, and genome reorganizations in both nuclear and mitochondrial DNA, evidenced by changes in molecular markers, were observed during the experiments. Interspecific hybrids seem to need fewer generations to reach genetic stability than intraspecific hybrids. The largest number of molecular patterns among the derived stable colonies was observed for intraspecific hybrids, particularly for those obtained by rare-mating in which the total amount of initial DNA was larger. Finally, a representative intraspecific stable hybrid underwent a normal industrial process to obtain active dry yeast production as an important point at which inducing changes in genome composition was possible. No changes in hybrid genetic composition after this procedure were confirmed by comparative genome hybridization. According to our results, fermentation steps 2 and 5 –comprising between 30 and 50 generations- suffice to obtain genetically stable interspecific and intraspecific hybrids, respectively. This work aimed to develop and validate a fast genetic stabilization method for newly generated Saccharomyces hybrids under selective enological conditions. A comparison of the whole stabilization process in intra- and interspecific hybrids showing different ploidy levels, as a result of using different hybridization methodologies, was also made.
Project description:In this work, we evaluated the genetic stabilization process, of the intra- (Saccharomyces cerevisiae) and interspecific (S. cerevisiae x Saccharomyces kudriavzevii) hybrids obtained by different non-GMO techniques, under fermentative conditions. Large-scale transitions in genome size, detected by measuring total DNA content, and genome reorganizations in both nuclear and mitochondrial DNA, evidenced by changes in molecular markers, were observed during the experiments. Interspecific hybrids seem to need fewer generations to reach genetic stability than intraspecific hybrids. The largest number of molecular patterns among the derived stable colonies was observed for intraspecific hybrids, particularly for those obtained by rare-mating in which the total amount of initial DNA was larger. Finally, a representative intraspecific stable hybrid underwent a normal industrial process to obtain active dry yeast production as an important point at which inducing changes in genome composition was possible. No changes in hybrid genetic composition after this procedure were confirmed by comparative genome hybridization. According to our results, fermentation steps 2 and 5 –comprising between 30 and 50 generations- suffice to obtain genetically stable interspecific and intraspecific hybrids, respectively. This work aimed to develop and validate a fast genetic stabilization method for newly generated Saccharomyces hybrids under selective enological conditions. A comparison of the whole stabilization process in intra- and interspecific hybrids showing different ploidy levels, as a result of using different hybridization methodologies, was also made. A stable hybrid strain was compared with itself before and after ADY (active dry yeast) production in order to evaluate the genetic stability of this strain.
Project description:CGH arrays for Smukowski Heil, et al MBE 2017. Hybridization is often considered maladaptive, but sometimes hybrids can invade new ecological niches and adapt to novel or stressful environments better than their parents. The genomic changes that occur following hybridization that facilitate genome resolution and/or adaptation are not well understood. Here, we address these questions using experimental evolution of de novo interspecific hybrid yeast Saccharomyces cerevisiae x Saccharomyces uvarum and their parentals. We evolved these strains in nutrient limited conditions for hundreds of generations and sequenced the resulting cultures to identify genomic changes. Analysis of 16 hybrid clones and 16 parental clones identified numerous point mutations, copy number changes, and loss of heterozygosity events, including species biased amplification of nutrient transporters. We focused on a particularly interesting example, in which we saw repeated loss of heterozygosity at the high affinity phosphate transporter gene PHO84 in both intra- and interspecific hybrids. Using allele replacement methods, we tested the fitness of different alleles in hybrid and S. cerevisiae strain backgrounds and found that the loss of heterozygosity is indeed the result of selection on one allele over the other in both S. cerevisiae and the hybrids. This is an example where hybrid genome resolution is driven by positive selection on existing heterozygosity, and demonstrates that even infrequent outcrossing may have lasting impacts on adaptation.
Project description:Yeast mannoproteins contribute to several aspects of wine quality by protecting wine against protein haze, reducing astringency, retaining aroma compounds and stimulating growth of lactic-acid bacteria. The selection of a yeast strain simultaneously overproducing mannoproteins and showing good fermentative characteristics is a difficult task. In this work, a Saccharomyces cerevisiae x Saccharomyces cerevisiae hybrid bearing the two oenologically relevant features was constructed and a reduction in the amount of bentonite necessary for wine stabilization was observed for wines fermented with the generated strain. Additionally, different copy numbers of some genes probably related with these physiological features were detected in this hybrid. Hybrid share with parental Sc1 similar copy number of genes SPR1, SWP1, MNN10 and YPS7 related to cell wall integrity and with parental Sc2 similar copy number of some glycolytic genes as GPM1 and HXK1 as well as genes involved in hexose transport as HXT9, HXT11 and HXT12. This work demonstrates that artificial hybridization and stabilization in winemaking conditions constitute an effective approach to obtain yeast strains with desirable physiological features as mannoprotein overproducing capacity and improved fermentation performance, characteristics genetically depending on the coordinated expression of a multitude of different genes. In this work, genetically stable mannoprotein overproducing Saccharomyces cerevisiae strains simultaneously showing excellent fermentation capacities were obtained by hybridization methods giving rise to non-GMO strains. The potential relationship between the copy number of specific genes and the improved features was also evaluated by means of aCGH analysis of parental and hybrid strains.
Project description:A six array study using total gDNA recovered from two separate cultures of each of three different strains of Saccharomyces cerevisiae (YB-210 or CRB, Y389 or MUSH, and Y2209 or LEP) and two separate cultures of Saccharomyces cerevisiae DBY8268. Each array measures the hybridization of probes tiled across the Saccharomyces cerevisiae genome.