Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:Bone is the primary site of breast cancer metastasis and complications associated with bone metastases can lead to a significantly decreased quality of life in these patients. Thus, it is essential to gain a better understanding of the molecular mechanisms that underlie the emergence and growth of breast cancer skeletal metastases. Methods: To search for novel molecular mediators that influence breast cancer bone metastasis, we generated gene expression profiles from laser capture micro-dissected trephine biopsies of both breast cancer bone metastases and primary breast tumors that metastasized to bone. Bioinformatics analysis identified genes that are differentially expressed in breast cancer bone metastases compared to primary mammary tumors. Results: ABCC5, an ATP-dependent transporter, was found to be overexpressed in breast cancer osseous metastases relative to primary mammary tumors. In addition, ABCC5 was significantly up-regulated in human and mouse breast cancer cell lines with high bone-metastatic potential. Stable knockdown of ABCC5 significant reduced bone metastatic burden and osteolytic bone destruction in mice. The decrease in osteolysis was further associated with diminished osteoclast numbers. Conclusions: Our data, for the first time, suggests that ABCC5 functions as a mediator of breast cancer skeletal metastasis. ABCC5 expression in breast cancer cells is important for the efficient bone resorption mediated by osteoclasts. Hence, ABCC5 may be a potential therapeutic target for breast cancer bone metastasis. primary breast tumors vs. bone trephine biopsies
Project description:As organ-specific models of breast cancer bone metastasis do not exist, we established a novel breast cancer line was established from the ER-/PR-/HER2- bone metastasis from a breast cancer patient. This cell line was characterized and compared to the primary tumour and/or normal mammary epithelial cells with regards to phenotypes (i.e. marker expression), gene expression and copy number variation.