Project description:Clostridium perfringens enterotoxin (encoded by the cpe gene) contributes to several important human, and possibly veterinary, enteric diseases. The current study investigated whether cpe locus organization in type C or D isolates resembles one of the three (one chromosomal and two plasmid-borne) cpe loci commonly found amongst type A isolates. Multiplex PCR assays capable of detecting sequences in those type A cpe loci failed to amplify products from cpe-positive type C and D isolates, indicating these isolates possess different cpe locus arrangements. Therefore, restriction fragments containing the cpe gene were cloned and sequenced from two type C isolates and one type D isolate. The obtained cpe locus sequences were then used to construct an overlapping PCR assay to assess cpe locus diversity amongst other cpe-positive type C and D isolates. All seven surveyed cpe-positive type C isolates had a plasmid-borne cpe locus partially resembling the cpe locus of type A isolates carrying a chromosomal cpe gene. In contrast, all eight type D isolates shared the same plasmid-borne cpe locus, which differed substantially from the cpe locus present in other C. perfringens by containing two copies of an ORF with 67% identity to a transposase gene (COG4644) found in Tn1546, but not previously associated with the cpe gene. These results identify greater diversity amongst cpe locus organization than previously appreciated, providing new insights into cpe locus evolution. Finally, evidence for cpe gene mobilization was found for both type C and D isolates, which could explain their cpe plasmid diversity.
Project description:Clostridium perfringens is a source of food poisoning in humans and animals because of production of a potent enterotoxin (CPE). To study the regulation of the cpe gene in C. perfringens, we cloned and sequenced the cpe promoter regions and N-terminal domains from three strains. The cpe promoter region from one strain contained a 45-bp insertion compared with previously published sequences. This insertion was also found in two (of five) other Cpe+ strains. cpe gene expression in C. perfringens was measured by using translational fusions of each promoter type to the Escherichia coli gusA gene, which codes for beta-glucuronidase. For either promoter type, cpe-gusA expression was undetectable throughout exponential growth but increased dramatically at the beginning of the stationary phase. To measure cpe expression in Bacillus subtilis, cpe-gusA fusions were integrated into the B. subtilis chromosome. Both types of promoter exhibited moderate expression during exponential growth; cpe expression increased threefold at the beginning of the stationary phase. Transcriptional start sites were determined by primer extension and in vitro transcription assays. For C. perfringens, both types of promoter gave the same 5' end, 197 bp upstream of the translation start (50 bp downstream of the 45-bp insertion). In B. subtilis, however, the 5' end was internal to the 45-bp insertion, suggesting the use of a different promoter than that utilized by C. perfringens.
Project description:Clostridium perfringens type A isolates causing food poisoning have a chromosomal enterotoxin gene (cpe), while C. perfringens type A isolates responsible for non-food-borne human gastrointestinal diseases carry a plasmid cpe gene. In the present study, the plasmid cpe locus of the type A non-food-borne-disease isolate F4969 was sequenced to design primers and probes for comparative PCR and Southern blot studies of the cpe locus in other type A isolates. Those analyses determined that the region upstream of the plasmid cpe gene is highly conserved among type A isolates carrying a cpe plasmid. The organization of the type A plasmid cpe locus was also found to be unique, as it contains IS1469 sequences located similarly to those in the chromosomal cpe locus but lacks the IS1470 sequences found upstream of IS1469 in the chromosomal cpe locus. Instead of those upstream IS1470 sequences, a partial open reading frame potentially encoding cytosine methylase (dcm) was identified upstream of IS1469 in the plasmid cpe locus of all type A isolates tested. Similar dcm sequences were also detected in several cpe-negative C. perfringens isolates carrying plasmids but not in type A isolates carrying a chromosomal cpe gene. Contrary to previous reports, sequences homologous to IS1470, rather than IS1151, were found downstream of the plasmid cpe gene in most type A isolates tested. Those IS1470-like sequences reside in about the same position but are oppositely oriented and defective relative to the IS1470 sequences found downstream of the chromosomal cpe gene. Collectively, these and previous results suggest that the cpe plasmid of many type A isolates originated from integration of a cpe-containing genetic element near the dcm sequences of a C. perfringens plasmid. The similarity of the plasmid cpe locus in many type A isolates is consistent with horizontal transfer of a common cpe plasmid among C. perfringens type A strains.
Project description:Clostridium perfringens is the cause of several human diseases, including gas gangrene (clostridial myonecrosis), enteritis necroticans, antibiotic-associated diarrhea, and acute food poisoning. The symptoms of antibiotic-associated diarrhea and acute food poisoning are due to sporulation-dependent production of C. perfringens enterotoxin encoded by the cpe gene. Glucose is a catabolite repressor of sporulation by C. perfringens. In order to identify the mechanism of catabolite repression by glucose, a mutation was introduced into the ccpA gene of C. perfringens by conjugational transfer of a nonreplicating plasmid into C. perfringens, which led to inactivation of the ccpA gene by homologous recombination. CcpA is a transcriptional regulator known to mediate catabolite repression in a number of low-G+C-content gram-positive bacteria, of which C. perfringens is a member. The ccpA mutant strain sporulated at a 60-fold lower efficiency than the wild-type strain in the absence of glucose. In the presence of 5 mM glucose, sporulation was repressed about 2,000-fold in the wild-type strain and 800-fold in the ccpA mutant strain compared to sporulation levels for the same strains grown in the absence of glucose. Therefore, while CcpA is necessary for efficient sporulation in C. perfringens, glucose-mediated catabolite repression of sporulation is not due to the activity of CcpA. Transcription of the cpe gene was measured in the wild-type and ccpA mutant strains grown in sporulation medium by using a cpe-gusA fusion (gusA is an Escherichia coli gene encoding the enzyme beta-glucuronidase). In the exponential growth phase, cpe transcription was two times higher in the ccpA mutant strain than in the wild-type strain. Transcription of cpe was highly induced during the entry into stationary phase in wild-type cells but was not induced in the ccpA mutant strain. Glucose repressed cpe transcription in both the wild-type and ccpA mutant strain. Therefore, CcpA appears to act as a repressor of cpe transcription in exponential growth but is required for efficient sporulation and cpe transcription upon entry into stationary phase. CcpA was also required for maximum synthesis of collagenase (kappa toxin) and acted as a repressor of polysaccharide capsule synthesis in the presence of glucose, but it did not regulate synthesis of the phospholipase PLC (alpha toxin).
Project description:Pancreatic cancer (PC) is one of the most lethal cancers worldwide, associated with poor prognosis and restricted therapeutic options. Clostridium perfringens enterotoxin (CPE), is a pore-forming (oncoleaking) toxin, which binds to claudin-3 and -4 (Cldn3/4) causing selective cytotoxicity. Cldn3/4 are highly upregulated in PC and represent an effective target for oncoleaking therapy. We utilized a translation-optimized CPE vector (optCPE) for new suicide approach of PC in vitro and in cell lines (CDX) and patient-derived pancreatic cancer xenografts (PDX) in vivo. The study demonstrates selective toxicity in Cldn3/4 overexpressing PC cells by optCPE gene transfer, mediated by pore formation, activation of apoptotic/necrotic signaling in vitro, induction of necrosis and of bystander tumor cell killing in vivo. The optCPE non-viral intratumoral in vivo jet-injection gene therapy shows targeted antitumoral efficacy in different CDX and PDX PC models, leading to reduced tumor viability and induction of tumor necrosis, which is further enhanced if combined with chemotherapy. This selective oncoleaking suicide gene therapy improves therapeutic efficacy in pancreas carcinoma and will be of value for better local control, particularly of unresectable or therapy refractory PC.
Project description:Clostridium perfringens, one of the most common causes of food poisonings, can carry the enterotoxin gene, cpe, in its chromosome or on a plasmid. C. perfringens food poisonings are more frequently caused by the chromosomal cpe-carrying strains, while the plasmid-borne cpe-positive genotypes are more commonly found in the human feces and environmental samples. Different tolerance to food processing conditions by the plasmid-borne and chromosomal cpe-carrying strains has been reported, but the reservoirs and contamination routes of enterotoxin-producing C. perfringens remain unknown. A comparative genomic hybridization (CGH) analysis with a DNA microarray based on three C. perfringens type A genomes was conducted to shed light on the epidemiology of C. perfringens food poisonings caused by plasmid-borne and chromosomal cpe-carrying strains by comparing chromosomal and plasmid-borne cpe-positive and cpe-negative C. perfringens isolates from human, animal, environmental, and food samples. The chromosomal and plasmid-borne cpe-positive C. perfringens genotypes formed two distinct clusters. Variable genes were involved with myo-inositol, ethanolamine and cellobiose metabolism, suggesting a new epidemiological model for C. perfringens food poisonings. The CGH results were complemented with growth studies, which demonstrated different myo-inositol, ethanolamine, and cellobiose metabolism between the chromosomal and plasmid-borne cpe-carrying strains. These findings support a ubiquitous occurrence of the plasmid-borne cpe-positive strains and their adaptation to the mammalian intestine, whereas the chromosomal cpe-positive strains appear to have a narrow niche in environments containing degrading plant material. Thus the epidemiology of the food poisonings caused by two populations appears different, the plasmid-borne cpe-positive strains probably contaminating foods via humans and the chromosomal strains being connected to plant material.
Project description:Enterotoxin-producing C. perfringens type A is a common cause of food poisonings. The cpe encoding the enterotoxin can be chromosomal (genotype IS1470) or plasmid-borne (genotypes IS1470-like-cpe or IS1151-cpe). The chromosomal cpe-carrying C. perfringens are a more common cause of food poisonings than plasmid-borne cpe-genotypes. The chromosomal cpe-carrying C. perfringens type A strains are generally more resistant to most food-processing conditions than plasmid-borne cpe-carrying strains. On the other hand, the plasmid-borne cpe-positive genotypes are more commonly found in human feces than chromosomal cpe-positive genotypes, and humans seem to be a reservoir for plasmid-borne cpe-carrying strains. Thus, it is possible that the epidemiology of C. perfringes type A food poisonings caused by plasmid-borne and chromosomal cpe-carrying strains is different. A DNA microarray was designed for analysis of genetic relatedness between the different cpe-positive and cpe-negative genotypes of C. perfringens strains isolated from human, animal, environmental and food samples. The DNA microarray contained two probes for all protein-coding sequences in the three genome-sequenced strains (C. perfringens type A strains 13, ATCC13124, and SM101). The chromosomal and plasmid-borne C. perfringens genotypes were grouped into two distinct clusters, one consisting of the chromosomal cpe-genotypes and the other consisting of plasmid-borne cpe-genotypes. Analysis of the variable gene pool complemented with the growth studies demonstrate different carbohydrate and amine metabolism in the chromosomal and plasmid-borne cpe-carrying strains, suggesting different epidemiology of the cpe-positive C. perfringens strain groups.
Project description:Clostridium perfringens is the third most frequent cause of bacterial food poisoning annually in the United States. Ingested C. perfringens vegetative cells sporulate in the intestinal tract and produce an enterotoxin (CPE) that is responsible for the symptoms of acute food poisoning. Studies of Bacillus subtilis have shown that gene expression during sporulation is compartmentalized, with different genes expressed in the mother cell and the forespore. The cell-specific RNA polymerase sigma factors sigma(F), sigma(E), sigma(G), and sigma(K) coordinate much of the developmental process. The C. perfringens cpe gene, encoding CPE, is transcribed from three promoters, where P1 was proposed to be sigma(K) dependent, while P2 and P3 were proposed to be sigma(E) dependent based on consensus promoter recognition sequences. In this study, mutations were introduced into the sigE and sigK genes of C. perfringens. With the sigE and sigK mutants, gusA fusion assays indicated that there was no expression of cpe in either mutant. Results from gusA fusion assays and immunoblotting experiments indicate that sigma(E)-associated RNA polymerase and sigma(K)-associated RNA polymerase coregulate each other's expression. Transcription and translation of the spoIIID gene in C. perfringens were not affected by mutations in sigE and sigK, which differs from B. subtilis, in which spoIIID transcription requires sigma(E)-associated RNA polymerase. The results presented here show that the regulation of developmental events in the mother cell compartment of C. perfringens is not the same as that in B. subtilis and Clostridium acetobutylicum.