Project description:The histone H3 variant, CENP-ACnp1, is normally assembled upon canonical centromeric sequences, but there is no apparent obligate coupling of sequence and assembly, suggesting that centromere location can be epigenetically determined. To explore the tolerances and constraints on CENP-ACnp1 deposition we investigated whether certain locations are favoured when additional CENP-ACnp1 is present in fission yeast cells. Our analyses show that additional CENP-ACnp1 accumulates within and close to heterochromatic centromeric outer repeats, and over regions adjacent to rDNA and telomeres. The use of minichromosome derivatives with unique DNA sequences internal to chromosome ends shows that telomeres are sufficient to direct CENP-ACnp1 deposition. However, chromosome ends are not required as CENP-ACnp1 deposition also occurs at telomere repeats inserted at an internal locus and correlates with the presence of H3K9 methylation near these repeats. The Ccq1 protein, which is known to bind telomere repeats and recruit telomerase, was found to be required to induce H3K9 methylation and thus promote the incorporation of CENP-A near telomere repeats. These analyses demonstrate that at non-centromeric chromosomal locations the presence of heterochromatin influences the sites at which CENP-A is incorporated into chromatin and thus, potentially the location of centromeres. For CENP-A/Cnp1 chromatin immunoprecipitation: DNA immunoprecipitated with anti-Cnp1 serum using chromatin extracts from mutants and wild type control cells in biological duplicates normalized to input DNA from each strain.
Project description:The histone H3 variant, CENP-ACnp1, is normally assembled upon canonical centromeric sequences, but there is no apparent obligate coupling of sequence and assembly, suggesting that centromere location can be epigenetically determined. To explore the tolerances and constraints on CENP-ACnp1 deposition we investigated whether certain locations are favoured when additional CENP-ACnp1 is present in fission yeast cells. Our analyses show that additional CENP-ACnp1 accumulates within and close to heterochromatic centromeric outer repeats, and over regions adjacent to rDNA and telomeres. The use of minichromosome derivatives with unique DNA sequences internal to chromosome ends shows that telomeres are sufficient to direct CENP-ACnp1 deposition. However, chromosome ends are not required as CENP-ACnp1 deposition also occurs at telomere repeats inserted at an internal locus and correlates with the presence of H3K9 methylation near these repeats. The Ccq1 protein, which is known to bind telomere repeats and recruit telomerase, was found to be required to induce H3K9 methylation and thus promote the incorporation of CENP-A near telomere repeats. These analyses demonstrate that at non-centromeric chromosomal locations the presence of heterochromatin influences the sites at which CENP-A is incorporated into chromatin and thus, potentially the location of centromeres.
Project description:A key element for defining the centromere identity is the incorporation of a specific histone H3, CENP-A, known as Cnp1p in S. pombe. Previous studies have suggested that functional S. pombe centromeres lack nucleosome arrays and may involve chromatin remodeling as a key step of kinetochore assembly. We used tiling microarrays to show that nucleosomes are in fact positioned in regular intervals in the core of centromere 2, providing the first high resolution map of regional centromere chromatin. Nucleosome locations are not disrupted by mutations in kinetochore proteins cnp1, mis18, mis12, nuf2, mal2, overexpression of Cnp1p, or deletion of ams2. Bioinformatic analysis of the centromere sequence indicates certain enriched motifs in linker regions between nucleosomes and reveals a sequence-bias in nucleosome positioning. We conclude that centromeric nucleosome positions are stable and may be derived from the underlying DNA sequence. In addition, sequence analysis of nucleosome-free regions identifies novel binding sites for the GATA-like protein Ams2p, which participates in CENP-A incorporation. Keywords: Nucleosome Mapping Study Entire cnt regions and histone-related genes were tiled at 1-5 bp spacing using 60-mer probes.
Project description:A key element for defining the centromere identity is the incorporation of a specific histone H3, CENP-A, known as Cnp1p in S. pombe. Previous studies have suggested that functional S. pombe centromeres lack nucleosome arrays and may involve chromatin remodeling as a key step of kinetochore assembly. We used tiling microarrays to show that nucleosomes are in fact positioned in regular intervals in the core of centromere 2, providing the first high resolution map of regional centromere chromatin. Nucleosome locations are not disrupted by mutations in kinetochore proteins cnp1, mis18, mis12, nuf2, mal2, overexpression of Cnp1p, or deletion of ams2. Bioinformatic analysis of the centromere sequence indicates certain enriched motifs in linker regions between nucleosomes and reveals a sequence-bias in nucleosome positioning. We conclude that centromeric nucleosome positions are stable and may be derived from the underlying DNA sequence. In addition, sequence analysis of nucleosome-free regions identifies novel binding sites for the GATA-like protein Ams2p, which participates in CENP-A incorporation. Keywords: Nucleosome Mapping Study
Project description:Telomeres are nucleoprotein structures at the ends of linear chromosomes. In humans, they consist of TTAGGG repeats, which are bound by dedicated proteins such as the shelterin complex. This complex consists of six proteins (TRF1, TRF2, RAP1, POT1, TPP1 and TIN2) and blocks unwanted DNA damage repair at telomeres, e.g. by suppressing non-homologous end joining (NHEJ) through its subunit TRF2. While shelterin does not work autonomously, additional direct telomere binding proteins have been described to function in a supplementary role. We here describe ZNF524, a zinc finger protein that directly binds to telomeric repeats with nanomolar affinity and reveal the base-specific sequence recognition by co-crystallization with telomeric DNA. ZNF524 localizes to telomeres and specifically maintains the presence of the TRF2/RAP1 subcomplex at telomeres without affecting the other shelterin members. Loss of ZNF524 concomitantly results in an increase in DNA damage signaling and recombination events. Overall, we identified ZNF524 as a direct telomere binding protein and propose that ZNF524 is involved in the maintenance of telomere integrity by promoting TRF2/RAP1 subcomplex binding.
Project description:Telomeres are nucleoprotein structures at the ends of linear chromosomes. In humans, they consist of TTAGGG repeats, which are bound by dedicated proteins such as the shelterin complex. This complex consists of six proteins (TRF1, TRF2, RAP1, POT1, TPP1 and TIN2) and blocks unwanted DNA damage repair at telomeres, e.g. by suppressing non-homologous end joining (NHEJ) through its subunit TRF2. While shelterin does not work autonomously, additional direct telomere binding proteins have been described to function in a supplementary role. We here describe ZNF524, a zinc finger protein that directly binds to telomeric repeats with nanomolar affinity and reveal the base-specific sequence recognition by co-crystallization with telomeric DNA. ZNF524 localizes to telomeres and specifically maintains the presence of the TRF2/RAP1 subcomplex at telomeres without affecting the other shelterin members. Loss of ZNF524 concomitantly results in an increase in DNA damage signaling and recombination events. Overall, we identified ZNF524 as a direct telomere binding protein and propose that ZNF524 is involved in the maintenance of telomere integrity by promoting TRF2/RAP1 subcomplex binding.
Project description:Telomere chromatin structure is pivotal for maintaining genome stability by regulating the binding of telomere-associated proteins and inhibition of a DNA damage response. In yeast, the silent information regulator (Sir) proteins bind to terminal telomeric repeats and to subtelomeric X-elements resulting in histone deacetylation and transcriptional silencing. Herein, we show that sir2 mutant strains display a very specific loss of a nucleosome residing in the X-element. Most yeast telomeres contain an X-element and the nucleosome occupancy defect in sir2 mutants is remarkably consistent between different telomeres.
Project description:Telomeres are nucleoprotein structures at the ends of linear chromosomes. In humans, they consist of TTAGGG repeats, which are bound by dedicated proteins such as the shelterin complex. This complex blocks unwanted DNA damage repair at telomeres, e.g. by suppressing non-homologous end joining (NHEJ) through its subunit TRF2. We here describe ZNF524, a zinc finger protein that directly binds telomeric repeats with nanomolar affinity and reveal the base-specific sequence recognition by co-crystallization with telomeric DNA. ZNF524 localizes to telomeres and specifically maintains the presence of the TRF2/RAP1 subcomplex at telomeres without affecting other shelterin members. Loss of ZNF524 concomitantly results in an increase in DNA damage signaling and recombination events. Overall, ZNF524 is a direct telomere-binding protein involved in the maintenance of telomere integrity.