Project description:NIH3T3 in the middle of G0 to G1 transion consists of the cells which is still staying G0 phase and the cells which enters G1. Monitoring the expressions of p27 and Cdt1 enables to distinguish these two; p27+/Cdt1+ cells as the cells in G0 phase and p27-Cdt1+ cells as G1 phase We sorted p27+Cdt1+ (G0) NIH3T3 cells and p27-Cdt1+ (G1) NIH3T3 cells in the middle of G0-G1 transition, 5 hours after serum addition following the serum addition using mVenus-p27K- and mCherry-hCdt1(30/120) . We compared the expression profiles of these NIH3T3 cells in G0 and G1 phases and identified the genes upregulated in G0 or G1 phases.
Project description:NIH3T3 in the middle of G0 to G1 transion consists of the cells which is still staying G0 phase and the cells which enters G1. Monitoring the expressions of p27 and Cdt1 enables to distinguish these two; p27+/Cdt1+ cells as the cells in G0 phase and p27-Cdt1+ cells as G1 phase We sorted p27+Cdt1+ (G0) NIH3T3 cells and p27-Cdt1+ (G1) NIH3T3 cells in the middle of G0-G1 transition, 5 hours after serum addition following the serum addition using mVenus-p27K- and mCherry-hCdt1(30/120) . We compared the expression profiles of these NIH3T3 cells in G0 and G1 phases and identified the genes upregulated in G0 or G1 phases. The p27+Cdt1+ (G0) NIH3T3 cells and p27-Cdt1+ (G1) NIH3T3 cells were sorted by FACS for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Damage to genomic DNA, especially as DNA double strand breaks (DSB), elicits prompt activation of DNA damage response (DDR) which arrest cell-cycle either G1/S or G2/M to avoid entering S and M phase with DNA damage. In mammalian organs cells are in both proliferating and quiescent states. Quiescent cells are already arrested in G0, therefore there may be fundamental difference in DDR between proliferating and quiescent cells. To address these differences we studied recruitment of DSB repair factors and resolution of DNA lesions induced at site-specific DSBs occurring at different cell cycle phases, i.e. in asynchronously proliferating, G0, and G1 arrested cells. Strikingly, DSBs occurring in G0 quiescent cells are irreparable with a sustained activation of p53-pathway. Conversely, reentry of G0-damaged cells into cell cycle progression, show a delayed clearance of recruited DNA repair factors bound at DSBs, indicating an inefficient repair when compared to DSBs induced in asynchronously proliferating or G1 cells. Moreover, we found that initial recognition of DSBs and assembly of DSB factors is largely similar at different cell cycle phases. Our study thereby demonstrates the crucial role of cell cycle phases in repair and resolution of DSBs.
Project description:To characterize LICs in ALL irrespective of surface markers expression, we investigated leukemia initiating activities of cellular subfractions of patient-derived xenograft BCP-ALL cells sorted according to different cell cycle phases (i.e. G0/G1 and G2/M) followed by transplantation onto NOD/SCID mice. All cell fractions led to leukemia engraftment indicating LIC activity irrespective of cell cycle stage. Most importantly, cells isolated from G0/G1 cell cycle phases led to early leukemia engraftment in contrast to cells from late cell cycle (G2/M). To further characterize cells with different engraftment potential in vivo, we analyzed the gene expression profiles of early (G1b early) and late (G2/M) engrafting cells.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:DNA double-strand break (DSB) repair by homologous recombination is confined to the S and G2 phases of the cell cycle partly due to 53BP1 antagonizing DNA end resection in G1 phase and non-cycling quiescent (G0) cells where DSBs must be repaired by non-homologous end joining (NHEJ). Unexpectedly, we uncovered extensive MRE11- and CtIP-dependent DNA end resection at DSBs in G0 mammalian cells. A whole genome CRISPR/Cas9 screen revealed the DNA-dependent kinase (DNA-PK) complex as a key factor in promoting DNA end resection in G0 cells. In agreement, depletion of FBXL12, which promotes ubiquitylation and removal of the KU70/KU80 subunits of DNA-PK from DSBs, promotes even more extensive resection in G0 cells. In contrast, a requirement for DNA-PK in promoting DNA end resection in cycling cells at the G1 or G2 phase cells was not observed. Our findings establish that DNA-PK uniquely promotes DNA end resection in G0, but not in G1 or G2 phase cells, and has important implications for DNA DSB repair in quiescent cells.
Project description:In order to identify genes associated with the engraftment potential of human hematopoietic stem cells, we have employed whole genome microarray expression profiling of G0 and G1 phase CD34+ cells derived from bone marrow, mobilized peripheral blood, and umbilical cord blood. Samples were collected from healthy adult volunteers after obtaining informed consent according to the guidelines of the Investigational Review Board of Indiana University School of Medicine. CD34+ cells were selected and fractionated into G0 and G1 phases of cell cycle on a flow cytometer. Purity of sorted cells was further confirmed by qRT-PCR by measuring the relative expression of Ki67. Sorted cells were subjeccted to microarray analysis. Three biological replicates of sorted and confirmed G0 and G1 cells from bone marrow, mobilized peripheral blood, and umbilical cord blood (total of eighteen samples) were subjected to microarray analysis. To generate distinct and unique sets of data, we did not pool multiple samples from any tissue studied so that each sample or its replicate was from a single donor.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.