Project description:The goal of this study was to analyze global gene expression in specific populations of nociceptor sensory neurons, the neurons that detect damaging/noxious stimuli. The dorsal root ganglia (DRG), trigeminal ganglia, and nodose ganglia are anatomically distinct peripheral sensory ganglia that contain nociceptors which innervate skin, gut, lungs, and other distinct organ tissues. We used flow cytometry to purify nociceptors from these ganglia and profiled their global gene expression signatures to compare gene expression between these different anatomically distinct nociceptors. Nav1.8-Cre were bred with Rosa26-TdTomato to generate Nav1.8-Cre/R26-TdTomato reporter progeny, where all peripheral nociceptor neurons are genetically marked with red fluroescence due to specific expression of the TTX- resistant sodium channel Nav1.8. Lumbar region dorsal root ganglia (DRG), trigeminal ganglia, and nodose ganglia were dissected from mice (3 mice were pooled/sample). Highly red fluorescent neurons were Facs purified, RNA extracted, and processed for microarray analysis.
Project description:The goal of this study was to analyze global gene expression in FACS purified Nav1.8 lineage sensory neurons, which include nociceptor neurons that detect damaging/noxious stimuli, following peripheral inflammation by intraplantar injection of Complete Freund's Adjuvant (CFA) or Sciatic Nerve Injury (SNI) by nerve transection. Nav1.8 Trangsgenic TdTomato+ neurons were purified from Lumbar L4-L6 dorsal root ganglia (DRG) by flow cytometry from mice on the ipsilateral or contralateral sides, following Complete Freund's Adjuvant injection (day 1) or sciatic nerve transection (day 5). Neurons were then analyzed for transcriptional gene expression by microarray analysis.
Project description:The goal of this study was to analyze global gene expression in specific populations of nociceptor sensory neurons, the neurons that detect damaging/noxious stimuli. The dorsal root ganglia (DRG), trigeminal ganglia, and nodose ganglia are anatomically distinct peripheral sensory ganglia that contain nociceptors which innervate skin, gut, lungs, and other distinct organ tissues. We used flow cytometry to purify nociceptors from these ganglia and profiled their global gene expression signatures to compare gene expression between these different anatomically distinct nociceptors.
Project description:Comparison of transcript levels after diphtheria-toxin deletion of the Nav1.8-expressing cells using the cre/loxP system.<br> Pain requires input from nociceptors which are specialised peripheral sensory neurons in dorsal root ganglia (DRG). To explore the nociceptor-specific mRNA profiles, we used microarray analysis to examine the altered repertoire of genes expressed in DRG from mice depleted of Nav1.8-expressing neurons which are mainly nociceptors. To generate the animal, a Nav1.8 knock-in Cre-expressing mouse (Nav1.8-Cre) was used to excise a floxed stop upstream of globally expressed diphtheria toxin A-subunit gene (ROSA26-eGFP-DTA). By crossing heterozygous Cre mice with homozygous toxin-expressing floxed mice, experimental toxin-expressing (DTA) mice, in which DTA expressing nociceptors had been deleted, were generated. 6 DTA mice and 6 litter mate controls were used for microarray analysis. 3 Affymetrix Mouse Genome 430 2.0 Array chips were employed for analysis of the gene transcripts of each conditions.
Project description:We use comprehensive and unsupervised transcriptome analyses to provide molecular classifications of sensory neurons in the mouse geniculate ganglion. 96 neurons were isolated on a C1 Fluodigm chip, underwent RNA-Seq, and iteratively clustered into sub-classes.
Project description:Dorsal root ganglia (DRG) play a crucial role in processing sensory information, making it essential to understand their development. Here, we construct a single-cell spatiotemporal transcriptomic atlas of human embryonic DRG. This atlas reveals the diversity of cell types and highlights the extrinsic signaling cascades and intrinsic regulatory hierarchies that guide cell fate decisions, including neuronal/glial lineage restriction, sensory neuron differentiation and specification, and the formation of neuron-satellite glial cell (SGC) unit. Additionally, we identify a human-enriched NTRK3+/DCC+ nociceptor subtype, which is involved in multimodal nociceptive processing. Mimicking the programmed activation of signaling pathways in vivo, we successfully establish functional human DRG organoids and underscore the critical roles of transcriptional regulators in the fate commitment of unspecialized sensory neurons (uSNs). Overall, our research elucidates the multilevel signaling pathways and transcription factor (TF) regulatory hierarchies that underpin the diversity of somatosensory neurons, emphasizing the phenotypic distinctions in human nociceptor subtypes.
Project description:We developed an approach to rapidly eliminate the subgroup of sensory neurons expressing the heat-gated cation channel TRPV1 from dissociated rat sensory ganglia using agonist treatment followed by density centrifugation. To identify transcripts predominantly expressed in TRPV1-positive neurons, we compared the transcriptome of all cells within sensory ganglia versus all cells without TRPV1 expressing neurons using RNA-Seq.