Project description:The transcription factor Mef2 regulates activity-dependent neuronal plasticity and morphology in mammals, and clock neurons are reported to experience activity-dependent circadian remodeling in Drosophila. We show here that Mef2 is required for this daily fasciculation-defasciculation cycle. Moreover, the master circadian transcription complex CLK/CYC directly regulates Mef2 transcription. ChIP-Chip analysis identified numerous Mef2 target genes implicated in neuronal plasticity, including the cell-adhesion gene Fas2. Genetic epistasis experiments support this transcriptional regulatory hierarchy, CLK/CYC->Mef2-> Fas2, indicate that it influences the circadian fasciculation cycle within pacemaker neurons and suggest that this cycle also contributes to circadian behavior. Mef2 therefore transmits clock information to machinery involved in neuronal remodeling, which contributes to locomotor activity rhythms. Mef2 ChIP-chip samples collected at 6 timepoints, input and IP samples
Project description:The transcription factor Mef2 regulates activity-dependent neuronal plasticity and morphology in mammals, and clock neurons are reported to experience activity-dependent circadian remodeling in Drosophila. We show here that Mef2 is required for this daily fasciculation-defasciculation cycle. Moreover, the master circadian transcription complex CLK/CYC directly regulates Mef2 transcription. ChIP-Chip analysis identified numerous Mef2 target genes implicated in neuronal plasticity, including the cell-adhesion gene Fas2. Genetic epistasis experiments support this transcriptional regulatory hierarchy, CLK/CYC->Mef2-> Fas2, indicate that it influences the circadian fasciculation cycle within pacemaker neurons and suggest that this cycle also contributes to circadian behavior. Mef2 therefore transmits clock information to machinery involved in neuronal remodeling, which contributes to locomotor activity rhythms.
Project description:Circadian clocks coordinate time-of-day specific metabolic and physiological processes to maximize performance and fitness. In addition to light, which is considered the strongest time cue to entrain animal circadian clocks, metabolic input has emerged as an important signal for clock modulation and entrainment, especially in peripheral clocks. Circadian clock proteins have been to be substrates of O-GlcNAcylation, a nutrient sensitive post-translational modification (PTM), and the interplay between clock protein O-GlcNAcylation and other PTMs, like phosphorylation, is expected to facilitate the regulation of circadian physiology by metabolic signals. Here, we used mass spectrometry proteomics to identify PTMs on PERIOD, the key biochemical timer of the Drosophila clock, over the circadian cycle.
Project description:Aging animals undergo a variety of changes in molecular processes. Among these, the cellular circadian clock has been shown to change as animals age. Moreover, there is evidence that also core circadian clock proteins could influence the ageing behavior of vertebrates. To investigate the interplay between aging and the circadian clock, we studied circadian mRNA expression in skeletal muscles from young (8 weeks) and aged (80 weeks) mice. In order to detect differences in circadian patterns, we used microarray-based transcriptome-wide time series of mRNA expression, containing 16 independent measurements for both young and aged animals. Each individual time point consists of total RNA from hind limb skeletal muscles from 3 different animals. Young and aged mice where entrained to 12 hr/12 hr light-dark conditions. From these mice, hind limb skeletal muscles were extracted at different times of day, in order to measure circadian mRNA expression patterns.
Project description:Aging animals undergo a variety of changes in molecular processes. Among these, the cellular circadian clock has been shown to change as animals age. Moreover, there is evidence that also core circadian clock proteins could influence the ageing behavior of vertebrates. To investigate the interplay between aging and the circadian clock, we studied circadian mRNA expression in skeletal muscles from young (8 weeks) and aged (80 weeks) mice. In order to detect differences in circadian patterns, we used microarray-based transcriptome-wide time series of mRNA expression, containing 16 independent measurements for both young and aged animals. Each individual time point consists of total RNA from hind limb skeletal muscles from 3 different animals.
Project description:Study on differential gene expression and splicing between wildtype and clock mutants. This study is part of a comparative analysis of the role of Protein Methyltransferase 5 in the regulation of transcriptional and post-transcriptional processes simultaneously in Arabidopsis and Drosophila. Circadian rhythms allow organisms to time biological processes to the most appropriate phases of the day/night cycle1. Post-transcriptional regulation is emerging as an important component of circadian networks2-6, but the molecular mechanisms linking the circadian clock to the control of RNA processing are largely unknown. Here we show that Protein Arginine Methyl Transferase 5 (PRMT5), which transfers methyl groups to arginine residues present in histones7 and Sm spliceosomal proteins8,9, links the circadian clock to the control of alternative splicing in plants. Mutations in prmt5impair multiple circadian rhythms in Arabidopsis thaliana and this phenotype is caused, at least in part, by a strong alteration in alternative splicing of the core-clock gene PSEUDO RESPONSE REGULATOR 9 (PRR9). Furthermore, genome wide studies show that PRMT5 contributes to regulate many pre-mRNA splicing events most likely modulating 5´splice site (5´ss) recognition. PRMT5 expression shows daily and circadian oscillations, and this contributes to mediate the circadian regulation of expression and alternative splicing of a subset of genes. Circadian rhythms in locomotor activity are also disrupted in dart5, a mutant affected in the Drosophila melanogaster PRMT5 homolog, and this is associated with alterations in splicing of the core-clock gene period (per) and several clock associated genes. Our results reveal a key role for PRMT5 in the regulation of alternative splicing and indicate that the interplay between the circadian clock and the regulation of alternative splicing by PRMT5 constitutes a common mechanism that helps organisms to synchronize physiological processes with daily changes in environmental conditions.
Project description:Single microRNAs are usually associated with hundreds of putative target genes that can influence multiple phenotypic traits in Drosophila, ranging from development to behaviour. We investigated the function of Drosophila miR-210 in circadian behaviour by misexpressing it within circadian clock cells. Manipulation of miR-210 expression levels in the PDF (pigment dispersing factor) positive neurons affected the phase of locomotor activity, under both light-dark conditions and constant darkness. PER cyclical expression was not affected in clock neurons, however, when miR-210 was up-regulated, a dramatic alteration in the morphology of PDF ventral lateral neuron (LNv) arborisations was observed. The effect of miR-210 in shaping neuronal projections was confirmed in vitro, using a Drosophila neuronal cell line. A transcriptomic analysis revealed that miR-210 overexpression affects the expression of several genes belonging to pathways related to circadian processes, neuronal development, GTPases signal transduction and photoreception. Collectively, these data reveal the role of miR-210 in modulating circadian outputs in flies and guiding/remodelling PDF positive LNv arborisations and indicate that miR-210 may have pleiotropic effects on the clock, light perception and neuronal development.
Project description:The circadian clock acts at the genomic level to coordinate internal behavioral and physiologic rhythms via the CLOCK-BMAL transcriptional heterodimer. Although the nuclear receptors REV-ERB? and ? have been proposed to contribute to clock function, their precise roles and importance remain unresolved. To establish their regulatory potential we generated comparative cistromes of both Rev-erb isoforms, which revealed shared recognition at over ~50% of their total sites and extensive overlap with the master clock regulator Bmal. While Rev-erb? has been shown to directly regulate Bmal expression, the cistromic analysis reveals a more profound connection between Bmal and Rev-erb? and ? regulatory circuits than previously suspected. Genes within the intersection of the Bmal and Rev-erb cistromes are highly enriched for both clock and metabolic functions. As predicted by the cistromic analysis, dual depletion of Rev-erb?/? function by creating double-knockout mice (DKOs) profoundly disrupted circadian expression of core clock and lipid homeostatic genes. As a result, DKOs show strikingly altered circadian wheel-running behavior and deregulated lipid metabolism. These data reveal an integral role of Rev-erb?/? in clock function as well as provide a cistromic basis for the integration of circadian rhythm and metabolism. Total RNA was obtained from livers of wild-type and Liver-specific Reverb alpha/beta double knockout mice at ZT 0, 4, 8, 12, 16, and 20.
Project description:The circadian clock acts at the genomic level to coordinate internal behavioral and physiologic rhythms via the CLOCK-BMAL transcriptional heterodimer. Although the nuclear receptors REV-ERBα and β have been proposed to contribute to clock function, their precise roles and importance remain unresolved. To establish their regulatory potential we generated comparative cistromes of both Rev-erb isoforms, which revealed shared recognition at over ~50% of their total sites and extensive overlap with the master clock regulator Bmal. While Rev-erbα has been shown to directly regulate Bmal expression, the cistromic analysis reveals a more profound connection between Bmal and Rev-erbα and β regulatory circuits than previously suspected. Genes within the intersection of the Bmal and Rev-erb cistromes are highly enriched for both clock and metabolic functions. As predicted by the cistromic analysis, dual depletion of Rev-erbα/β function by creating double-knockout mice (DKOs) profoundly disrupted circadian expression of core clock and lipid homeostatic genes. As a result, DKOs show strikingly altered circadian wheel-running behavior and deregulated lipid metabolism. These data reveal an integral role of Rev-erbα/β in clock function as well as provide a cistromic basis for the integration of circadian rhythm and metabolism. Identification of Reverb alpha and Reverb beta binding sites in mouse liver at ZT8
Project description:This SuperSeries is composed of the following subset Series: GSE39977: Transcriptional Architecture and Chromatin Landscape of the Core Circadian Clock in Mammals [ChIP-seq] GSE39978: Transcriptional Architecture and Chromatin Landscape of the Core Circadian Clock in Mammals [RNA-seq] Refer to individual Series