Project description:Autoimmune rheumatic diseases are complex disorders, whose etiopathology is attributed to a crosstalk between genetic predisposition and environmental factors. Both variants of autoimmune susceptibility genes and environment are involved in the generation of aberrant epigenetic profiles in a cell-specific manner, which ultimately result in dysregulation of expression. Furthermore, changes in miRNA expression profiles also cause gene dysregulation associated with aberrant phenotypes. In rheumatoid arthritis, several cell types are involved in the destruction of the joints, synovial fibroblasts being among the most important. In this study we performed DNA methylation and miRNA expression screening of a set of rheumatoid arthritis synovial fibroblasts and compared the results with those obtained from osteoarthritis patients with a normal phenotype. DNA methylation screening allowed us to identify changes in novel key target genes like IL6R, CAPN8 and DPP4, as well as several HOX genes. A significant proportion of genes undergoing DNA methylation changes were inversely correlated with expression. miRNA screening revealed the existence of subsets of miRNAs that underwent changes in expression. Integrated analysis highlighted sets of miRNAs that are controlled by DNA methylation, and genes that are regulated by DNA methylation and are targeted by miRNAs with a potential use as clinical markers. Our study enabled the identification of novel dysregulated targets in rheumatoid arthritis synovial fibroblasts and generated a new workflow for the integrated analysis of miRNA and epigenetic control. Comparison between the DNA methylation levels of synovial fibroblasts isolated from 6 Osteoarthritis and 6 Rheumatoid arthritis patients isolated from synovial tissues at the time of joint replacement. Bisulphite converted DNA from the 12 samples were hybridised to the Illumina Infinium 450k Human Methylation Beadchip
Project description:Autoimmune rheumatic diseases are complex disorders, whose etiopathology is attributed to a crosstalk between genetic predisposition and environmental factors. Both variants of autoimmune susceptibility genes and environment are involved in the generation of aberrant epigenetic profiles in a cell-specific manner, which ultimately result in dysregulation of expression. Furthermore, changes in miRNA expression profiles also cause gene dysregulation associated with aberrant phenotypes. In rheumatoid arthritis, several cell types are involved in the destruction of the joints, synovial fibroblasts being among the most important. In this study we performed DNA methylation and miRNA expression screening of a set of rheumatoid arthritis synovial fibroblasts and compared the results with those obtained from osteoarthritis patients with a normal phenotype. DNA methylation screening allowed us to identify changes in novel key target genes like IL6R, CAPN8 and DPP4, as well as several HOX genes. A significant proportion of genes undergoing DNA methylation changes were inversely correlated with expression. miRNA screening revealed the existence of subsets of miRNAs that underwent changes in expression. Integrated analysis highlighted sets of miRNAs that are controlled by DNA methylation, and genes that are regulated by DNA methylation and are targeted by miRNAs with a potential use as clinical markers. Our study enabled the identification of novel dysregulated targets in rheumatoid arthritis synovial fibroblasts and generated a new workflow for the integrated analysis of miRNA and epigenetic control.
Project description:Genome-wide DNA methylation level was studied to determine whether Rheumatoid arthritis patients (cases) has methylation differences comparing to normal controls in PBLs. We used Illumina HumanMethylation450 BeadChip array to determine the genome-wide DNA methylation difference in PBLs from Rheumatoid arthritis patients (cases) and normal controls Bisulphite converted DNA from the Rheumatoid arthritis patients (cases) and normal controls were hybridized to the Illumina Illumina HumanMethylation450 BeadChip arrays
Project description:Genome-wide DNA methylation level was studied to determine whether Rheumatoid arthritis patients (cases) has methylation differences comparing to normal controls in peripheral blood leukocytes (PBLs). We used Illumina HumanMethylation450 BeadChip array to determine the genome-wide DNA methylation difference in PBLs from Rheumatoid arthritis patients (cases) and normal controls
Project description:This is the first high-throughput analysis of DNA methylation in autoimmune diseases. We have used a cohort of MZ twins discordant for three diseases whose clinical signs often overlap: systemic lupus erythematosus (SLE), rheumatoid arthritis and dermatomyositis. Only MZ twins discordant for SLE featured widespread changes in the DNA methylation status of a significant number of genes. Individual analysis confirmed the existence of DNA methylation and expression changes in genes relevant to SLE pathogenesis. Our findings not only identify potentially relevant DNA methylation markers for the clinical characterization of SLE patients but also support the notion that epigenetic changes may be critical in the clinical manifestations of autoimmune disease. Total DNA isolated by standard procedures from 59 White Blood Cell (WBC) samples corresponding to monozygotic twins discordant for three different autoimmune diseases: systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and dermatomyositis (DM) and two additional controls for each MZ twin pair.
Project description:Rheumatoid arthritis (RA) is an autoimmune disease that causes chronic inflammation of the joints involved with genetic and epigenetic aberrant. Recent evidence found more and more importance of the epigenetic contribution, especially the DNA methylation, to the pathogenesis of rheumatoid arthritis. To understand the extent and nature of dysregulated DNA methylation in rheumatoid arthritis T cells, we performed a genome-wide DNA methylation study in CD4+ T cells in 12 rheumatoid arthritis patients compared to 12 matched normal healthy controls. [Methods and Result] Cytosine methylation status was quantified with Illumina methylation 450K microarray (HM450K, 485512 CpG sites). We identified 810 hypomethylated and 392 hypermethylated CG sites in RA CD4+ T cells compared to normal controls, representing 383 and 785 genes hypermethylated and hypomethylated in RA patients (P<3.4*10-7). Cluster analysis based on significantly differential methylated loci showed distinct separation between RA and normal controls. Gene ontology analysis showed alternative splicing (P=1.2*10-7, FDR) and phosphoprotein (1.7*10-2, FDR) were significantly aberrant in RA patients, indicating the abnormal of transcript alternative splicing and protein modification mediated by DNA methylation might play important role in the pathogenesis of rheumatoid arthritis. What’s more, the result showed human leukocyte antigen (HLA) region was frequently hypomethylated in RA patients, including HLA-DRB6, HLA-DQA1 and HLA-E, however, HLA-DQB1 showed different methylation profiles with significant hypermethylation in CpG island region and hypomethylation in CpG shelf region. Outsite of the MHC region, the most hypermethylated genes in RA included HDAC4, NXN, TBCD and TMEM61 while the most significant hypomethylated genes included ITIH3, TCN2, PRDM16, SLC1A5 and GALNT9. [Conclusion] Genome-wide DNA methylation patterns revealed significant DNA methylation change in CD4+ T cells from patients with rheumatoid arthritis. 12 rheumatoid arthritis and 12 matched health individuals
Project description:Genome wide DNA methylation profiling of monocytes from healthy donors and rheumatoid arthritis patients. The Illumina Infinium MethylationEPIC Beadchip was used to obtain DNA methylation profiles across approximately 850,000 CpGs in CD11b+CD33+CD15neg monocytes isolated from PBMCs of 17 healthy donors and 47 rheumatoid arthritis patients with different disease activity scores (DAS28).