ABSTRACT: A novel methyl-binding domain protein enrichment method for identifying genome-wide tissue-specific DNA methylation from nanogram DNA samples
Project description:We performed affinity-based enrichment with methyl-CpG binding domain protein followed by high-throughput sequencing (MBD-seq) to assay DNA methylation in mouse liver tissue.
Project description:We performed affinity-based enrichment with methyl-CpG binding domain protein followed by high-throughput sequencing (MBD-seq) to assay DNA methylation in mouse liver tissue.
Project description:The DNA methylome of 45 primary neuroblastoma tumors is profiled by enrichment with a methyl-CpG-binding domain (MBD) and massively parallel sequencing
Project description:The DNA methylome of 42 primary neuroblastoma tumors is profiled by enrichment with a methyl-CpG-binding domain (MBD) and massively parallel sequencing
Project description:The DNA methylome of 15 primary stage 4S neuroblastoma tumors is profiled by enrichment with a methyl-CpG-binding domain (MBD) and massively parallel sequencing
Project description:Epigenetic modifications have emerged as central players in the coordination of gene expression networks during cardiac development. While several studies have investigated the role of histone modifications during heart development, relatively little is known about the role of DNA methylation. The purpose of the current study was to determine whether DNA methylation plays an important role in guiding transcriptional changes during the neonatal period, which is an important developmental window for cardiac maturation and cardiomyocyte cell cycle arrest. We used methyl binding domain protein sequencing (MBD-seq) and mRNA-seq to profile DNA methyation and gene expression respectively in neonatal hearts at P1 and P14 stages. Thousands of differentially methylated regions (DMRs) were identified between P1 and P14, the vast majority of which were hypermethylated. Gene ontology analysis revealed that these hypermethylated genes were associated with transcriptional regulation of important developmental signaling pathways, including Hedgehog, BMP, TGF beta, FGF and Wnt/b-catenin signaling. A significant enrichment for myogenic transcription factors and Smad2/3/4 binding sites was also noted among differentially methylated peaks at P14. This study provides novel evidence for widespread alterations in DNA methylation during post-natal heart maturation and suggests that DNA methylation plays an important role in cardiomyocyte cell cycle arrest during the neonatal period. We used methyl binding domain protein sequencing (MBD-seq) to profile DNA methyation in neonatal hearts at P1 and P14 stages (post-natal day 1 and 14 respectively) in three biological replicates.
Project description:Examine involvement of MBD3 (methyl-CpG-binding domain protein 3), a protein involved in reading DNA methylation patterns, in epileptogenesis and epilepsy.
Project description:The DNA methylome of 45 primary neuroblastoma tumors is profiled by enrichment with a methyl-CpG-binding domain (MBD) and massively parallel sequencing DNA of 45 primary tumors is sheared (fragments of ± 200 bp), followed by MBD-based (MethylCap kit of Diagenode) enrichement, library preparation and multiplexing. Both input DNA and captured DNA were sequenced paired-end on Illumina Hiseq2000