Project description:Gene regulation during the process of osteoblastogenesis has been well-described, yet the discovery of novel regulatory regions has been limited by how we currently predict the locations of functional cis-regulatory modules. Historically, the de novo identification of sequences critical for the control of gene expression relied primarily on sequence conservation in promoters. Queries for binding motifs were based on position weight matrices of known transcription factors and the identification of disease-causing, non-coding mutations near critical genes. However, we now must consider that regulatory elements also rely on 3-dimensional chromosomal interactions between far-distal regions, epigenetic chromosomal modifications, and RNA:DNA interactions. Traditionally, DNaseI-hypersensitivity assays have been used for the identification of regulatory regions via preferential digestion at chromatin depleted or displaced of nucleosomes, as a result of transcription factor occupancy. We probed DNase hypersensitivity on a genome-wide scale to determine whether osteogenic differentiation and/or bone-related gene regulation is marked by the presence of commonly utilized DNA motifs within active cis-regulatory modules. We thus sought to evaluate the gain or loss of motif representation within hypersensitive regions during osteoblastogenesis, from day-0 (growth-phase) to day-28 (mineralizing) MC3T3 cultures. We find that differentiation is marked by an increased enrichment of NFkB-p65, MEF2, and bHLH/E-box motifs within hypersensitive regions, while CTCF, NF1, TEAD, and AP1 motifs decrease. Furthermore, grouping hypersensitive regions based on genomic positioning (promoters, introns, exons, and far-distal regions) reveals significant differences in motif abundance in first introns versus other genomic positions. This finding suggests that the regulation conferred within first intron sequences may be somewhat distinct. Interestingly, the majority of motifs that were enriched, regardless of genomic position or differentiation time-point, were not completely matched to currently known transcription factor motifs (curated in the JASPAR database). Taken together, the changes in DNase-hypersensitive regions during osteoblastogenesis and the enrichment of distinct motifs within these regions indicate that osteoblasts utilize unique sets of motif rules for transcription factor binding or that regulatory control operates through undiscovered factors. Genome-wide DNase hypersensitivity mapping of osteoblast cultures was performed by adapting the DNase-seq protocol from Song et al. (Song and Crawford, 2010) with slight modifications. Growth-phase (day 0), matrix-deposition stage (day 9), or mineralization stage (day 28) MC3T3-E1 clone-4 cultures were subjected to DNase-seq library preparation. Libraries of purified DNA were generated using custom adapters described in Song et al. High-throughput sequencing was performed by Illumina Genome Analyzer II with 36 base reads and on an Illumina Hiseq-1000 with 100 base reads. Base calls and sequence reads were generated by Illumina CASAVA software (version 1.6, Illumina). Two independent biological repeats of DNase-seq libraries were prepared for each time point. Each biological repeat is represented by two technical repeats.
Project description:Identifying cis-regulatory elements is important to understand how human pancreatic islets modulate gene expression in physiologic or pathophysiologic (e.g., diabetic) conditions. We conducted genome-wide analysis of DNase I hypersensitive sites, histone H3 lysine methylation marks (K4me1, K4me3, K79me2), and CCCTC factor (CTCF) binding in human islets. This identified ~18,000 putative promoters (several hundred novel and islet-active). Surprisingly, active promoter marks were absent at genes encoding islet-specific hormones, suggesting a distinct regulatory mechanism. Of 34,039 distal (non-promoter) regulatory elements, 47% are islet-unique and 22% are CTCF-bound. These findings present a global snapshot of the human islet epigenome and should provide functional context for non-coding variants emerging from genetic studies of T2D and other pancreatic islet disorders. Three different islet samples were tested for DNase I hypersensitivity by DNase-Seq. Five different primary pancreatic islet samples were evaluated for several chromatin modifications (H3K4me3, H3K4me1, H3K79me2) by ChIP-seq. One islet sample was evaluated for CTCF binding via ChIP-seq, All ChIP-seq samples have both non-specific IP (GFP) and input DNA controls.
Project description:Gene regulation during the process of osteoblastogenesis has been well-described, yet the discovery of novel regulatory regions has been limited by how we currently predict the locations of functional cis-regulatory modules. Historically, the de novo identification of sequences critical for the control of gene expression relied primarily on sequence conservation in promoters. Queries for binding motifs were based on position weight matrices of known transcription factors and the identification of disease-causing, non-coding mutations near critical genes. However, we now must consider that regulatory elements also rely on 3-dimensional chromosomal interactions between far-distal regions, epigenetic chromosomal modifications, and RNA:DNA interactions. Traditionally, DNaseI-hypersensitivity assays have been used for the identification of regulatory regions via preferential digestion at chromatin depleted or displaced of nucleosomes, as a result of transcription factor occupancy. We probed DNase hypersensitivity on a genome-wide scale to determine whether osteogenic differentiation and/or bone-related gene regulation is marked by the presence of commonly utilized DNA motifs within active cis-regulatory modules. We thus sought to evaluate the gain or loss of motif representation within hypersensitive regions during osteoblastogenesis, from day-0 (growth-phase) to day-28 (mineralizing) MC3T3 cultures. We find that differentiation is marked by an increased enrichment of NFkB-p65, MEF2, and bHLH/E-box motifs within hypersensitive regions, while CTCF, NF1, TEAD, and AP1 motifs decrease. Furthermore, grouping hypersensitive regions based on genomic positioning (promoters, introns, exons, and far-distal regions) reveals significant differences in motif abundance in first introns versus other genomic positions. This finding suggests that the regulation conferred within first intron sequences may be somewhat distinct. Interestingly, the majority of motifs that were enriched, regardless of genomic position or differentiation time-point, were not completely matched to currently known transcription factor motifs (curated in the JASPAR database). Taken together, the changes in DNase-hypersensitive regions during osteoblastogenesis and the enrichment of distinct motifs within these regions indicate that osteoblasts utilize unique sets of motif rules for transcription factor binding or that regulatory control operates through undiscovered factors.
Project description:Gene regulation during the process of osteoblastogenesis has been well-described, yet the discovery of novel regulatory regions has been limited by how we currently predict the locations of functional cis-regulatory modules. Historically, the de novo identification of sequences critical for the control of gene expression relied primarily on sequence conservation in promoters. Queries for binding motifs were based on position weight matrices of known transcription factors and the identification of disease-causing, non-coding mutations near critical genes. However, we now must consider that regulatory elements also rely on 3-dimensional chromosomal interactions between far-distal regions, epigenetic chromosomal modifications, and RNA:DNA interactions. Traditionally, DNaseI-hypersensitivity assays have been used for the identification of regulatory regions via preferential digestion at chromatin depleted or displaced of nucleosomes, as a result of transcription factor occupancy. We probed DNase hypersensitivity on a genome-wide scale to determine whether osteogenic differentiation and/or bone-related gene regulation is marked by the presence of commonly utilized DNA motifs within active cis-regulatory modules. We thus sought to evaluate the gain or loss of motif representation within hypersensitive regions during osteoblastogenesis, from day-0 (growth-phase) to day-28 (mineralizing) MC3T3 cultures. We find that differentiation is marked by an increased enrichment of NFkB-p65, MEF2, and bHLH/E-box motifs within hypersensitive regions, while CTCF, NF1, TEAD, and AP1 motifs decrease. Furthermore, grouping hypersensitive regions based on genomic positioning (promoters, introns, exons, and far-distal regions) reveals significant differences in motif abundance in first introns versus other genomic positions. This finding suggests that the regulation conferred within first intron sequences may be somewhat distinct. Interestingly, the majority of motifs that were enriched, regardless of genomic position or differentiation time-point, were not completely matched to currently known transcription factor motifs (curated in the JASPAR database). Taken together, the changes in DNase-hypersensitive regions during osteoblastogenesis and the enrichment of distinct motifs within these regions indicate that osteoblasts utilize unique sets of motif rules for transcription factor binding or that regulatory control operates through undiscovered factors.
Project description:Mitosis entails global alterations to chromosome structure and nuclear architecture, concomitant with transient silencing of transcription. How cells transmit transcriptional states through mitosis remains incompletely understood. While many nuclear factors dissociate from mitotic chromosomes, the observation that certain nuclear factors and chromatin features remain associated with individual loci during mitosis originated the hypothesis that they could provide transcriptional memory through mitosis. To obtain the first genome-wide view of the dynamics of chromatin structure during mitosis, we compared the DNase sensitivity of interphase and mitotic chromatin at two stages of cellular maturation in a rapidly dividingmurine erythroblastmodel. Despite global chromosome condensation visible during mitosis at the microscopic level, the chromatin accessibility landscape is largely unaltered. However, mitotic chromatin accessibility is locally dynamic, with individual loci maintaining none, some, or all of their interphase accessibility. Mitotic reduction in accessibility occurs primarily within narrow, highly hypersensitive sites that frequently coincide with transcription factor binding sites, whereas broader domains of moderate accessibility tend to be more stable. In mitosis, proximal promoters generally maintain their accessibility, whereas distal regulatory elements preferentially lose accessibility. Promoters with the highest degree of accessibility preservation in mitosis tend to also be accessible across many murine tissues in interphase. Transcription factor GATA1 exerts site-specific changes in interphase accessibility that are most pronounced at distal regulatory elements, but does not visibly influence mitotic accessibility. We conclude that features of open chromatin are remarkably stable through mitosis and are modulated at the level of individual genes and regulatory elements. Dnase-Seq data is integrated with Chip-seq [GSE36589, GSE30142] and RNA-seq to examine epigentic changes in mitosis. We performed DNase-seq on two cell lines, G1E and G1E-ER4, both on an asynchronus population, and on a sample of cells in mitosis; each of the 4 experiments in triplicate.
Project description:Gene expression is controlled by the complex interaction of transcription factors binding to promoters and other regulatory DNA elements. One common characteristic of the genomic regions associated with regulatory proteins is a pronounced sensitivity to DNase I digestion. We generated genome-wide high resolution maps of DNase I hypersensitive (DH) sites from both seedling and callus tissues of rice. Approximately 25% of the DH sites from both tissues were found in the putative promoters, indicating that the vast majority of gene regulatory elements in rice are not located at promoter regions. We found 58% more DH sites in callus than in seedling. For DH sites detected in both seedling and callus, 31% displayed significantly different levels of DNase I sensitivity within the two tissues. Genes that were differentially expressed in seedling and callus were frequently associated with DH sites in both tissues. The DNA sequences contained within the DH sites were hypomethylated, consistent with what is known about active gene regulatory elements. Interestingly, tissue-specific DH sites located in the promoters showed an elevated level of DNA methylation. A distinct elevation of H3K27me3 was associated with intergenic DH sites. These results suggest that epigenetic modifications play a role in the dynamic changes of the numbers and DNase I sensitivity of DH sites during development. Generation of genome-wide high resolution maps of DNase I hypersensitive sites in two tissues of rice. For seedling, we constructed 3 libraries (biological replicates) and sequenced a lane of Illumina Genome Analyzer for each library. For callus, we constructed 2 libraries (biological replicates). We sequenced two lanes for one library and one lane for another library.
Project description:Gene expression is controlled by the complex interaction of transcription factors binding to promoters and other regulatory DNA elements. One common characteristic of the genomic regions associated with regulatory proteins is a pronounced sensitivity to DNase I digestion. We generated genome-wide high resolution maps of DNase I hypersensitive (DH) sites from both seedling and callus tissues of rice. Approximately 25% of the DH sites from both tissues were found in the putative promoters, indicating that the vast majority of gene regulatory elements in rice are not located at promoter regions. We found 58% more DH sites in callus than in seedling. For DH sites detected in both seedling and callus, 31% displayed significantly different levels of DNase I sensitivity within the two tissues. Genes that were differentially expressed in seedling and callus were frequently associated with DH sites in both tissues. The DNA sequences contained within the DH sites were hypomethylated, consistent with what is known about active gene regulatory elements. Interestingly, tissue-specific DH sites located in the promoters showed an elevated level of DNA methylation. A distinct elevation of H3K27me3 was associated with intergenic DH sites. These results suggest that epigenetic modifications play a role in the dynamic changes of the numbers and DNase I sensitivity of DH sites during development. To do associated analysis with DNase I hypersensitive sites in rice, we performed ChIP-seq to identify the positions of three histone modifications (H3K4me2, H3K36me3 and H4K12ac) in the rice genome (leaf tissue only - not callus). The ChIP DNA from seedling of each experiment was sequenced on one lane of Illumina Genome Analyzer.
Project description:Identifying cis-regulatory elements is important to understand how human pancreatic islets modulate gene expression in physiologic or pathophysiologic (e.g., diabetic) conditions. We conducted genome-wide analysis of DNase I hypersensitive sites, histone H3 lysine methylation marks (K4me1, K4me3, K79me2), and CCCTC factor (CTCF) binding in human islets. This identified ~18,000 putative promoters (several hundred novel and islet-active). Surprisingly, active promoter marks were absent at genes encoding islet-specific hormones, suggesting a distinct regulatory mechanism. Of 34,039 distal (non-promoter) regulatory elements, 47% are islet-unique and 22% are CTCF-bound. These findings present a global snapshot of the human islet epigenome and should provide functional context for non-coding variants emerging from genetic studies of T2D and other pancreatic islet disorders.
Project description:Gene expression is controlled by the complex interaction of transcription factors binding to promoters and other regulatory DNA elements. One common characteristic of the genomic regions associated with regulatory proteins is a pronounced sensitivity to DNase I digestion. We generated genome-wide high resolution maps of DNase I hypersensitive (DH) sites from both seedling and callus tissues of rice. Approximately 25% of the DH sites from both tissues were found in the putative promoters, indicating that the vast majority of gene regulatory elements in rice are not located at promoter regions. We found 58% more DH sites in callus than in seedling. For DH sites detected in both seedling and callus, 31% displayed significantly different levels of DNase I sensitivity within the two tissues. Genes that were differentially expressed in seedling and callus were frequently associated with DH sites in both tissues. The DNA sequences contained within the DH sites were hypomethylated, consistent with what is known about active gene regulatory elements. Interestingly, tissue-specific DH sites located in the promoters showed an elevated level of DNA methylation. A distinct elevation of H3K27me3 was associated with intergenic DH sites. These results suggest that epigenetic modifications play a role in the dynamic changes of the numbers and DNase I sensitivity of DH sites during development.
Project description:Mapping DNaseI hypersensitive (HS) sites is an accurate method of identifying the location of genetic regulatory elements, including promoters, enhancers, silencers, insulators, and locus control regions. We employed whole genome tiled array strategies to identify DNaseI HS sites within human primary CD4+ T cells. Keywords: whole genome tiling array DNAse hypersensitivity from two biologic replicates of CD4+ T-cells were hybridized to a whole-genome tiling array set (38 arrays each) and compared to the input DNA from the same samples.