Project description:Bcl-xL is an anti-apoptotic protein that is frequently found to be overexpressed in non-small cell lung cancer leading to an inhibition of apoptosis and poor prognosis. Recently, the role of miRNAs in regulating apoptosis and cell survival during tumorigenesis has become evident, with cancer cells showing perturbed expression of various miRNAs. We utilized miRNA microarrays to determine if miRNA dysregulation in bcl-xL silenced lung adenocarcinoma cells could be involved in regulating apoptotic behavior, and identified dysregulated miRNAs with putative targets involved in signal transduction pathways regulating apoptosis, cell proliferation and cell progression. Short interfering RNA-based transfection of A549 was carried out inducing a reduction in bcl-xL expression levels. 24 hours post-transfection total RNA was isolated using TRIzol reagent and hybridized onto Affymetrix GeneChip miRNA Arrays. A global miRNA expression profile was then established, which compared total RNA, extracted from siRNA-transfected and non-transfected A549 cells. All experiments were carried out with three independent biological replicates.
Project description:Bcl-xL is an anti-apoptotic protein that is frequently found to be overexpressed in non-small cell lung cancer leading to an inhibition of apoptosis and poor prognosis. Recently, the role of miRNAs in regulating apoptosis and cell survival during tumorigenesis has become evident, with cancer cells showing perturbed expression of various miRNAs. We utilized miRNA microarrays to determine if miRNA dysregulation in bcl-xL silenced lung adenocarcinoma cells could be involved in regulating apoptotic behavior, and identified dysregulated miRNAs with putative targets involved in signal transduction pathways regulating apoptosis, cell proliferation and cell progression.
Project description:MicroRNA levels in non-transformed BEAS-2B bronchial epithelial cells, two lines of mycoplasma transformed BEAS-2B cells, and A549 lung adenocarcinoma cells were measured. Microarray analyses of 1145 microRNAs in A549 lung adenocarcinoma cells and two other transformed lung cell types relative to BEAS-2B bronchial epithelial cells were performed. 106 miRNAs were down-regulated and 69 miRNAs were up-regulated in all three transformed lines
Project description:Genome-wide genetic screens have identified cellular dependencies in many cancers. Using Novartis’ DRIVE and the Broad Institute’s Achilles shRNA screening datasets, we mined for targetable dependencies in kidney lineage cancer cells. Our studies identified a dependency, preferentially in kidney cancer cells versus cells of other lineages, on the BCL2L1 gene, which encodes the Bcl-xL anti-apoptotic protein. Genetic and pharmacological inactivation of Bcl-xL, but not its paralog BCL2, led to fitness defects in renal cancer cells, and also sensitized them to chemotherapeutics. Expression levels of Bcl-xL, VHL status, and p53 mutation status were insufficient to predict Bcl-xL dependence. Instead, analyzing the transcriptional hallmarks of response to Bcl-xL blockade identified an elevated mesenchymal cell state signature in Bcl-xL dependent lines. Functional studies to address if these cell state differences drive Bcl-xL dependence showed that maintaining mesenchymal characteristics was necessary to confer sensitivity to Bcl-xL loss; and, conversely, that promoting mesenchymal transition was sufficient to increase sensitivity to Bcl-xL inhibition in resistant cells. This mesenchymal signature was also observed in almost a third of human renal tumors, and is associated with worse clinical outcomes. Detachment from an organized epithelium incites protective apoptotic responses in normal cells (e.g. anoikis); however, our findings suggest that, in mesenchymal kidney cancer cells Bcl-xL activity counteracts this protective mechanism and enables tumor cell survival. Altogether, our studies uncover an unexpected link between cellular cell state and dependence on anti-apoptotic proteins, and justify the use of Bcl-xL blockade to target a clinically aggressive subset of human kidney cancers.
Project description:Oncogene-driven lung cancers such as those with activating mutations in the epidermal growth factor receptor (EGFR) often harbor additional co-occurring genetic alterations. The significance of most alterations co-occurring with mutant EGFR remains unclear. We report the impact of loss of the mRNA splicing factor RBM10 in human EGFR mutant lung cancer. RBM10 loss decreased EGFR inhibitor efficacy in patient-derived EGFR mutant tumor models. RBM10 regulated mRNA splicing of the mitochondrial apoptotic regulator Bcl-x. Genetic inactivation of RBM10 diminished EGFR inhibitor-mediated apoptosis by altering Bcl-x splicing, decreasing Bcl-xS (pro-apoptotic) and increasing Bcl-xL (anti-apoptotic) levels. Co-inhibition of Bcl-xL and mutant EGFR overcomes resistance induced by RBM10 loss. RBM10 loss was a biomarker of poor response to EGFR inhibitor treatment in clinical samples. Inactivation of the splicing factor RBM10 is a key co-occurring genetic alteration in EGFR mutant tumors that limits EGFR inhibitor efficacy and a potential biomarker of Bcl-xL inhibitor response.
Project description:RNA expression analysis was performed to compare patterns to sensitivity to BCL2 inhibitors (ABT-263). Overexpression of the prosurvival Bcl-2 family members (Bcl-2, Bcl-xL and Mcl-1) is commonly associated with tumor maintenance, progression and chemoresistance. We previously reported the discovery of ABT-737, a potent, small molecule Bcl-2 family protein inhibitor. A major limitation of ABT-737 is that it is not orally bioavailable. This may limit its use for chronic single agent treatment and the flexibility to dose in combination with parenteral chemotherapy. Here we report the discovery and biological properties of ABT-263, a potent, orally bioavailable Bad-like BH3 mimetic (Kiâ??s of < 1 nM for Bcl-2, Bcl-xL and Bcl-w). The oral bioavailability of ABT-263 in preclinical animal models is 20% - 50%, depending on formulation. ABT-263 disrupts Bcl-2/Bcl-xL interactions with pro-death proteins (e.g., Bim) in cells leading to the initiation of apoptosis within 2 hr post-treatment. In human tumor cells, ABT-263 rapidly induces Bax translocation, cytochrome c release and subsequent programmed cell death. Oral administration of ABT-263 alone induces complete tumor regressions in xenograft models of small cell lung cancer and acute lymphoblastic leukemia. In xenograft models of aggressive B-cell lymphoma and multiple myeloma where ABT-263 exhibits modest or no single agent activity, it significantly enhances the efficacy of clinically relevant therapeutic regimens. These data provide the rationale for clinical trials evaluating ABT-263 in SCLC and B-cell malignancies. The oral efficacy of ABT-263 should provide dosing flexibility to maximize clinical utility as both a single agent and in combination with standard chemotherapeutic regimens. Experiment Overall Design: Naive cell lines were isolated in duplicate or triplicate (only a single for H69AR) to determine RNA expression pattern.