Project description:The goals of these studies are to explore the mechanisms that enable extreme physiological plasticity and that may account for evolutionary divergence of adaptive osmotic physiologies among taxa that occupy different osmotic niches. In a common-garden environment, we track physiological and genome expression responses to hypo-osmotic (freshwater) challenge during a time-course of acclimation, and contrast these responses within and between species. We seek to identify mechanisms that facilitate osmotic acclimation that are evolutionarily conserved between basal and derived physiologies, and identify mechanisms that are uniquely derived to enable the extreme osmotic plasticity exhibited by F. heteroclitus. Importantly, previous studies using a comparable experimental design have identified physiological changes and genome expression responses that are adaptive for populations of F. heteroclitus that live in fresh water. As such, this enables us to test whether mechanisms of adaptive micro-evolutionary divergence across osmotic gradients within F. heteroclitus are shared with the mechanisms that account for patterns of macro-evolutionary divergence between F. heteroclitus and F. majalis that we identify in this study. That is, are the targets of micro-evolutionary fine-tuning the same or different as the targets of macro-evolutionary divergence across osmotic boundaries? Population comparisons include between populations from Chesapeake Bay (CB), coastal Virginia (VA), and coastal Georgia (GA).
Project description:Global climate change increasingly polarizes environments, presenting unprecedented challenges to many organisms (Smol, 2012). Polarization occurs not only in the spatial dimension, producing greater desert drought and tropical rainfall, for example, but also in the temporal dimension by making a local environment more variable over time. Many organisms survive these fluctuating environmental conditions by manifesting multiple distinct phenotypes through developmental processes that enable phenotypic plasticity (Pigliucci et al., 2006; Parsons et al., 2011). As with early development, these processes are expected to strictly regulate gene expression to canalize phenotype, despite the genetic diversity within populations (Alberch, 1982; Riska, 1986, Pigliucci et al., 1996). For plasticity to evolve, natural selection must act on genes that regulate trait variation, e.g, those conferring norms of reaction to a specific set of conditions. Despite the importance of these reaction norms for coping with environmental challenges, the genetic framework underlying phenotypic plasticity remains poorly defined, making it impossible to study how they function, differ among natural populations, and evolve. Here we used arsenic, a chemical inhibitor of salinity acclimation, to identify genes involved in transforming the gill from its freshwater to its seawater architecture in the euryhaline teleost Fundulus heteroclitus. Linear model interaction terms associated with the combined effect of arsenic and salinity challenge revealed an antagonistic relationship between arsenic exposure and salinity acclimation Exposure to arsenic during salinity acclimation yielded gene expression values similar to those observed in unexposed fish that remained in a stable environment, demonstrating that arsenic prevents changes in gene expression that normally enable osmotic plasticity. The gene sets defined by the interaction terms showed reduced inter-individual variation, suggesting unusually tight control, consistent with the hypothesis that they participate in a canalized developmental response. Evidence that natural selection acts to preserve their canalized gene expression was obtained by referencing three populations that differ in their adaptive tolerance to salinity changes (Whitehead et al., 2011). Specifically, populations adapted to withstand the widest salinity range showed both reduced transcriptional variation in genes enabling gill plasticity and an increased osmoregulatory capacity, highlighted by more stable plasma chloride concentrations in response to an osmotic challenge. Finally, we observed significantly fewer associations between genes underlying trait variation and their transcriptional regulators compared to genes that responded to only arsenic or salinity. Collectively, our results demonstrate that phenotypic plasticity converges on a molecular solution that parallels early development, in which the expression of phenotypic plasticity genes and phenotypes are canalized in part by reducing trans-regulatory complexity. 36 Sample comparisons with fish gills exposed to freshwater, freshwater to seawater for 1 hour, freshwater to seawater for 1 hour with arsenic, freshwater to seawater for 24 hours, freshwater to seawater for 24 hours with arsenic, and freshwater with arsenic for 48 hours
Project description:The Atlantic killifish (Fundulus heteroclitus) is an ideal model species to study physiological and toxicological adaptations to stressors. Killifish inhabiting the PCB-contaminated Superfund site in New Bedford Harbor, MA (NBH) have evolved resistance to toxicity and activation of the aryl hydrocarbon receptor (AHR) signaling pathway after exposure to PCBs and other AHR agonists. Until recently, a lack of genomic information has limited efforts to understand the molecular mechanisms underlying environmental adaptation to stressors. The advent of high throughput sequencing has facilitated an unbiased assessment of coding as well as non-coding RNAs in any species of interest. Among non-coding RNAs, microRNAs (miRNAs) are important regulators of gene expression and play crucial roles in development and physiology. The objective of this study is to catalog the miRNAs in killifish and determine their expression patterns in the embryos from contaminated (NBH) and pristine (Scorton Creek, MA (SC)) sites. Embryos from NBH and SC were collected daily from 1 to 15 days post-fertilization and RNA from pooled samples from each site was sequenced using SOLiD sequencing. We obtained 7.5 and 11 million raw reads from pooled SC and NBH samples, respectively. Analysis of the sequencing data identified 216 conserved mature miRNA sequences that are expressed during development. Using the draft killifish genome, we retrieved the miRNA precursor sequences. Based on the capacity of these putative precursor sequences to form the characteristic hairpin loop (assessed using RNAfold), we identified 197 conserved miRNA sequences in the genome.
Project description:Most studies that examine the ontogeny of lymphoid organ development in teleostean fishes use species of interest to aquaculture or genetic research and, to date, have focused strictly on marine or freshwater species. The mummichog, Fundulus heteroclitus, also known as the estuarine killifish, is a unique model for studies on developmental immunobiology, because it is euryhaline, has a high degree of thermal tolerance, and has a unique reproductive strategy. Embryonic and larval mummichogs were examined for the ontogeny of lymphoid tissue development. The first lymphoid organ to appear was the head kidney at 1 dph, followed by the spleen at 1 wph, and then the thymus at 3 wph. Rag-1 was partially cloned and sequenced and shown to be highly conserved among other vertebrate Rag-1 genes. Using QT-PCR to monitor the temporal expression of Rag-1, it was shown to reach a maximum intensity at 3 and 4 wph and then to drop to pre-2-wph levels. Overall, this study suggests that juvenile mummichogs do not possess the ability to mount T- or B-cell responses until some time after 5 wph. Even though the estuarine killifish tolerates a wide range of salinities, the developmental patterns of lymphoid tissues are similar to what has been reported for strictly marine (stenohaline) teleosts. Thus, the mummichog should be a convenient model for understanding the developmental immunobiology of most marine teleosts.
Project description:Traits that are relevant for resilience to climate change are polygenic and not correlated in Atlantic killifish, Fundulus heteroclitus