Project description:Although the Venus flytrap (Dionaea muscipula) can be considered as one of the most extensively investigated carnivorous plants, knowledge is still scarce about diversity of the snap-trap motion, the functionality of snap traps under varying environmental conditions, and their opening motion. By conducting simple snap-trap closure experiments in air and under water, we present striking evidence that adult Dionaea snaps similarly fast in aerial and submersed states and, hence, is potentially able to gain nutrients from fast aquatic prey during seasonal inundation. We reveal three snapping modes of adult traps, all incorporating snap buckling, and show that millimeter-sized, much slower seedling traps do not yet incorporate such elastic instabilities. Moreover, opening kinematics of young and adult Dionaea snap traps reveal that reverse snap buckling is not performed, corroborating the assumption that growth takes place on certain trap lobe regions. Our findings are discussed in an evolutionary, biomechanical, functional-morphological and biomimetic context.
Project description:The mechanical principles for fast snapping in the iconic Venus flytrap are not yet fully understood. In this study, we obtained time-resolved strain distributions via three-dimensional digital image correlation (DIC) for the outer and inner trap-lobe surfaces throughout the closing motion. In combination with finite element models, the various possible contributions of the trap tissue layers were investigated with respect to the trap's movement behavior and the amount of strain required for snapping. Supported by in vivo experiments, we show that full trap turgescence is a mechanical-physiological prerequisite for successful (fast and geometrically correct) snapping, driven by differential tissue changes (swelling, shrinking, or no contribution). These are probably the result of the previous accumulation of internal hydrostatic pressure (prestress), which is released after trap triggering. Our research leads to an in-depth mechanical understanding of a complex plant movement incorporating various actuation principles.