Project description:endogenous small RNAs from Chlamydomonas reinhardtii strain J3(mt-) vegetative cells Keywords: High throughput 454 small RNA sequencing
Project description:Investigation of whole genome gene expression level in motile strain of Sphingomonas. sp A1 All flagellar genes in motile strain of Sphingomonas. sp A1 are highly transcribed.
Project description:Relentless mining operations have destroyed our environment significantly. Soil inhabiting microbes play a significant role in ecological restoration of these areas. Microbial weathering processes like chemical dissolution of rocks significantly promotes the soil properties and enhances the rock to soil ratio respectively. Earlier studies have reported that bacteria exhibit efficient rock-dissolution abilities by releasing organic acids and other chemical elements from the silicate rocks. However, rock-dissolving mechanisms of the bacterium remain to be unclear till date. Thus, we have performed rock-dissolution experiments followed by genome and transcriptome sequencing of novel Pseudomonas sp.NLX-4 strain to explore the efficiency of microbe-mediated habitat restoration and its molecular mechanisms underlying this biological process. Results obtained from initial rock dissolution experiments revealed that Pseudomonas sp. NLX-4 strain efficiently accelerates the dissolution of silicate rocks by secreting amino acids, exopolysaccharides, and organic acids with elevated concentrations of potassium, silicon and aluminium elements. The rock dissolution experiments of NLX-4 strain exhibited an initial increase in particle diameter variation values between 0-15 days and decline after 15 days-time respectively. The 6,771,445-base pair NLX-4 genome exhibited 63.21 GC percentage respectively with a total of 6041 protein coding genes. Genome wide annotations of NLX-4 strain exhibits 5045-COG, 3996-GO, 5342-InterPro, 4386-KEGG proteins respectively Transcriptome analysis of NLX-4 cultured with/without silicate rocks resulted in 539 (288-up and 251-down) differentially expressed genes (DEGs). Fifteen DEGs encoding for siderophore transport, EPS and amino acids synthesis, organic acids metabolism, and bacterial resistance to adverse environmental conditions were highly up-regulated by cultured with silicate rocks. This study has not only provided a new strategy for the ecological restoration of rock mining areas, but also enriched the applicable bacterial and genetic resources.
Project description:The whole proteome analysis of the Pseudomonas sp. FIP_A4 strain in presence and absence of fipronil was conducted to evaluate the differentially expressed enzymes that can play role in fipronil degradation.
Project description:RNA-seq analysis of Pseudomonas sp OST1909 exposed to various preparations of naphthenic acids samples led to the identiifcation of many NA-induced genes.
Project description:Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a persistent nitramine explosive with long-lasting properties. Rhodococcus sp. strain DN22 has been discovered as one of the microorganisms capable of RDX degradation. Despite respectable studies on Rhodococcus sp. strain DN22, the proteins participating in RDX degradation (Oxidoreductase and Cytochrome P450) in the strain remain to be fragments. In this study, complete genome of Rhodococcus sp. strain DN22 was sequenced and analyzed, and the entire sequences of the two genes encoding Oxidoreductase and Cytochrome P450 in Rhodococcus sp. strain DN22 were predicted, which were validated through proteomic data. Besides, despite the identification of certain chemical substances as proposed characterized degradation intermediates of RDX, few studies have investigated the physiological changes and metabolic pathways occurring within Rhodococcus sp. cells when treated with RDX, particularly through the use of mass spectrometry-based omics. Hence, proteomics and metabolomics of Rhodococcus sp. strain DN22 were performed and analyzed with the presence or absence of RDX in the medium. A total of 3186 protein groups were identified and quantified between the two groups, with 117 proteins being significantly differentially expressed proteins. A total of 1056 metabolites were identified after merging positive and negative ion modes, among which 131 metabolites were significantly differential. Through the combined analysis of differential proteomics and metabolomics, several KEGG pathways, including two-component system, ABC transporters, alanine, aspartate and glutamate metabolism, arginine biosynthesis, purine metabolism, nitrogen metabolism, and phosphotransferase system (PTS) were found to be significantly enriched. We expect that our investigation will expand the acquaintance of Rhodococcus sp. strain DN22, and the knowledge of microbial degradation.