Project description:Profiles of genome-wide DNA methylation were investigated in isolated endometrial stromal cells from eutopic and ectopic endometrium. DNA methylation profiles were quite different between eutopic ESC and ectopic ESC, whereas no clear dfference were recognized between eutpic ESC with and without endometriosis. Bisulphite converted DNA from three cultured endometrial stromal cells (ESCs) from eutopic endometria without endometriosis, three ESCs with endometriosis and three ESCs from chocolate cysts were hybridised to the Illumina infinium HumanMethylation27 BeadChip.
Project description:Profiles of genome-wide DNA methylation were investigated in isolated endometrial stromal cells from eutopic and ectopic endometrium. DNA methylation profiles were quite different between eutopic ESC and ectopic ESC, whereas no clear dfference were recognized between eutpic ESC with and without endometriosis.
Project description:Transcriptome profiles were investigated in isolated endometrial stromal cells (ESCs) from eutopic and ectopic endometrium. The profiles were quite different between eutopic ESC and ectopic ESC, whereas no clear dfference was recognized between eutopic ESC with and without endometriosis. Total RNA from three cultured endometrial stromal cells (ESCs) from eutopic endometria without endometriosis, three ESCs with endometriosis and three ESCs from chocolate cysts were hybridised to the Affymetrix Human Gene 1.0 ST Array.
Project description:Endometriosis is a prevalent health condition in women of reproductive age characterized by ectopic growth of endometrial tissue in the extrauterine environment. Thorough understanding of the molecular mechanisms underlying the disease are still lacking and incomplete. We dissect eutopic and ectopic endometrial primary stromal cell proteomes to a depth of nearly 6900 proteins using quantitative mass-spectrometry with a spike-in SILAC standard. Acquired data reveal metabolic reprogramming of ectopic stromal cells of endometriosis with extensive upregulation of glycolysis and down-regulation of oxidative respiration – a wide-spread metabolic phenotype previously described in many cancers. Our results also underlie other molecular changes of ectopic endometriotic stromal cells indicating reduced apoptotic potential, increased cellular adhesiveness/invasiveness and altered immune function. The changes related to metabolism are additionally reflected by attenuated aerobic respiration of ectopic endometrial stromal cells measured by live cell oximetry and by altered mRNA levels. These comprehensive proteomics data refine the current understanding of endometriosis presenting potential new avenues for therapies.
Project description:Endometriosis is a prevalent health condition in women of reproductive age characterized by ectopic growth of endometrial tissue in the extrauterine environment. Thorough understanding of the molecular mechanisms underlying the disease are still lacking and incomplete. We dissect eutopic and ectopic endometrial primary stromal cell proteomes to a depth of nearly 6900 proteins using quantitative mass-spectrometry with a spike-in SILAC standard. Acquired data reveal metabolic reprogramming of ectopic stromal cells of endometriosis with extensive upregulation of glycolysis and down-regulation of oxidative respiration – a wide-spread metabolic phenotype previously described in many cancers. Our results also underlie other molecular changes of ectopic endometriotic stromal cells indicating reduced apoptotic potential, increased cellular adhesiveness/invasiveness and altered immune function. The changes related to metabolism are additionally reflected by attenuated aerobic respiration of ectopic endometrial stromal cells measured by live cell oximetry and by altered mRNA levels. These comprehensive proteomics data refine the current understanding of endometriosis presenting potential new avenues for therapies.
Project description:Transcriptome profiles were investigated in isolated endometrial stromal cells (ESCs) from eutopic and ectopic endometrium. The profiles were quite different between eutopic ESC and ectopic ESC, whereas no clear dfference was recognized between eutopic ESC with and without endometriosis.
Project description:To identify differentially expressed genes (DEGs) and molecular pathways in eutopic endometrial stroma cells (EuESCs) from adenomyosis patients and provide a new insight into disease mechanisms at transcriptome level.Gene expression profiling of normal endometrial stromal cells (N-ESCs) and adenomyotic eutopic endometrial stroma cells (A-EuESCs) were analyzed by using RNA-sequencing.
Project description:Adenomyosis, defined as ectopic endometrial tissue within the myometrium, can often be misdiagnosed as multiple uterine leiomyomata or endometrial thickening. We therefore performed a combined mRNA and long noncoding (lnc)RNA microarray and bioinformatic analysis of eutopic and ectopic endometrium in women with adenomyosis to better understand its pathogenesis and help in the development of a semi-invasive diagnostic test. A total of 586 mRNAs were increased and 305 mRNAs decreased in ectopic endometrium of adenomyosis compared with eutopic endometrium, while 388 lncRNA transcripts were up-regulated and 188 down-regulated in ectopic compared with paired eutopic endometrial tissue. Bioinformatic analysis suggested a series of metabolic and molecular abnormalities in adenomyosis, which have many similarities with endometriosis. Furthermore, our study constitutes the first known report of lncRNA expression patterns in human adenomyosis ectopic and eutopic endometrial tissue. Two-condition experiment, ectopic endometrium vs. eutopic endometrium. 3 samples,self-control