Project description:In cells lacking the histone methyltransferase Set2, initiation of RNA polymerase II transcription occurs inappropriately within the protein-coding regions of genes, rather than being restricted to the proximal promoter. Here, we mapped the transcripts produced in an S. cerevisiae strain lacking Set2, and applied rigorous statistical methods to identify sites of cryptic transcription at high resolution.
Project description:Altering the genetic code for applications in synthetic biology and genetic code expansion involves engineered tRNAs that incorporate amino acids that differ from what is defined by the “standard” genetic code. Since these engineered tRNA variants can be lethal due to proteotoxic stress, regulating their expression is necessary to achieve high levels of the resulting novel proteins. Mechanisms to positively regulate transcription with exogenous activator proteins like those often used to regulate RNA polymerase II (RNAP II) transcribed genes are not applicable to tRNAs as their expression by RNA polymerase III requires elements internal to the tRNA. Here, we show that tRNA expression is repressed by overlapping transcription from an adjacent RNAP II promoter. Regulating the expression of the RNAP II promoter allows inverse regulation of the tRNA. Placing either Gal4 or TetR-VP16 activated promoters downstream of a mistranslating tRNA serine variant that mis-incorporates serine at proline codons in Saccharomyces cerevisiae allows mistranslation at a level not otherwise possible because of the toxicity of the unregulated tRNA. Using mass spectrometry, we determine th frequency of mistranslation in both the induced and repressed conditions of the galactose inducible and tetracycline inducible systems.
Project description:Quantitative analysis of transcription start site selection in Saccharomyces cerevisiae reveals control by DNA sequence, RNA Polymerase II activity, and NTP levels
Project description:In cells lacking the histone methyltransferase Set2, initiation of RNA polymerase II transcription occurs inappropriately within the protein-coding regions of genes, rather than being restricted to the proximal promoter. Here, we mapped the transcripts produced in an S. cerevisiae strain lacking Set2, and applied rigorous statistical methods to identify sites of cryptic transcription at high resolution. Wild type (BY4741) and set2â (BY4741) strains were grown at 30°C in YPD (1% yeast extract, 2% peptone, 2% dextrose) to an OD600 of 0.6-0.8. For each of the three replicates, Total RNA was extracted by acid-phenol method (Xiao et al. 2003). Double-stranded cDNA was prepared using an Invitrogen SuperScript⢠(Cat No. 11917-010) primed with Oligo(dt) and random hexamers. For each replicate, the wt and set2â cDNA were independetly fluorescently labeled and comparatively hybridized to high-resolution 385K Saccharomyces cerevisiae CGH arrays (2005-08-16_SCER_WG_CGH) with Tm-normalized probes. In one of the replicates, assignment of the fluorescent label was reversed.