Project description:The aim of this study was to assess whether chronic treatment with RPV can modulate the progression of chronic liver disease, especially of non-alcoholic fatty liver disease (NAFLD), through a nutritional model in wild-type mice Mice were daily treated with RPV (p.o.) and fed with normal or high fat diet during 3 months to induce fatty liver disease
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Recombinant insect baculoviral vectors (BV) efficiently transduce several types of cells in the brain and can possibly be used for gene therapy for brain disorders. To verify the suitability of using these viral vectors to develop gene therapy strategies in the brain, and to evaluate our method of virus purification, we evaluated immune reactions upon acute administration of BV that were purified by ion-exchange membrane chromatography with high-speed centrifugation or high-speed centrifugation alone into the mouse brain using microarray global gene expression profiling.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:Here, we examined mouse brain trancriptional changes 1 hour after the 10th daily i.p. treament with one of the four following treaments: i) vehicle control (45% saline, 45% PEG-400 and 10% DMSO administered at 7.5mL/kg), ii) Cpd-60, 45mg/kg , administered at 7.5mL/kg or iii) SAHA, 25mg/kg, administered at 5mL/kg) or iv) CI-994, 10mg/kg, administered at 5mL/kg. Cpd-60 is a benzamide HDAC inhibitor with selectivity for class I HDAC subtypes HDAC1 and HDAC2; CI-994 is a benzamide inhibitor with selectivity for HDACs1,2 and 3; SAHA is a hydroxamic acid HDAC inhibitor with selectivity for class I HDAC subtypes 1,2, and 3 and the class II HDAC subtype HDAC 6. We examined transcript differences using the Illumnia WG-6 2.0 whole genome expression array and profiled 3 specific brain regions (prefrontal cortex, nucleus accumbens, hippocampus) from each of 36 mice (n=6 mice / treatment group) . For application to array chips, we pooled two biological replicates from like treatment and brain region-groups such that 36 samples were applied in total: 4 treatment groups x 3 brain regions per treament group x 3 pools of two samples each for each treatment/brain region.