Project description:We asked what genes are significantly differentially regulated in the spinal cord of SCI trkB.T1 WT and trkB.T1 KO mice. TrkB.T1 is upregulated shortly after SCI although the precise mechanisms underyling this upregulation are poorly understood. In the trkB.T1 null, we show less mechanical allodynia and better locomotor recovery following SCI. The microarray studies helped us to elucidate a signaling pathway that is differently regulated in the WT versus KO mice at 1 day after SCI. In this study, we did not examine gene changes within a genotype after SCI. Rather, we examined DGE by genotype at each time point. Spinal cord tissue from WT and KO mice in a sham condition (intact spinal cord) versus 1D, 3D and 7D following SCI was harvested for microarray analyses.
Project description:We asked what genes are significantly differentially regulated in the spinal cord of SCI trkB.T1 WT and trkB.T1 KO mice. TrkB.T1 is upregulated shortly after SCI although the precise mechanisms underyling this upregulation are poorly understood. In the trkB.T1 null, we show less mechanical allodynia and better locomotor recovery following SCI. The microarray studies helped us to elucidate a signaling pathway that is differently regulated in the WT versus KO mice at 1 day after SCI. In this study, we did not examine gene changes within a genotype after SCI. Rather, we examined DGE by genotype at each time point.
Project description:Summary: Spinal cord injury (SCI) is a damage to the spinal cord induced by trauma or disease resulting in a loss of mobility or feeling. SCI is characterized by a primary mechanical injury followed by a secondary injury in which several molecular events are altered in the spinal cord often resulting in loss of neuronal function. Hypothesis: Spinal cord injury (SCI) induces a cascade of molecular events including the activation of genes associated with transcription factors, inflammation, oxidative stress, ionic imbalance, apoptosis and neuroregeneration which suggests the existance of endogenous reparative attempts. However, not all mechanisms following SCI are well known. Specific Aim: The goal of this project is to analyze the molecular events following spinal cord injury 1 cm above, below, and at the site of injury (T9), aiming at finding potential new targets to improve recovery and therapy.
Project description:We have previously shown that Il1a-knockout (KO) mice exhibit rapid (at day 1) and persistent improvements in locomotion associated with reduced lesion volume compared with Il1b-KO mice and C57BL/6 controls after traumatic spinal cord injury (SCI). To investigate the mechanism by which Il1a mediates its detrimental effect, we analyzed the transcriptome of the injured spinal cord of Il1a-KO, Il1b-KO and C57BL/6 mice at 24 hours after SCI using GeneChip microarrays. Il1a-KO, Il1b-KO and C57BL/6 mice were subjected to a 50-kdyn SCI and a 6-mm spinal cord segment centered over the site of contusion extracted for RNA isolation and microarray analysis.
Project description:Summary: Spinal cord injury (SCI) is a damage to the spinal cord induced by trauma or disease resulting in a loss of mobility or feeling. SCI is characterized by a primary mechanical injury followed by a secondary injury in which several molecular events are altered in the spinal cord often resulting in loss of neuronal function. Analysis of the areas directly (spinal cord) and indirectly (raphe and sensorimotor cortex) affected by injury will help understanding mechanisms of SCI. Hypothesis: Areas of the brain primarily affected by spinal cord injury are the Raphe and the Sensorimotor cortex thus gene expression profiling these two areas might contribute understanding the mechanisms of spinal cord injury. Specific Aim: The project aims at finding significantly altered genes in the Raphe and Sensorimotor cortex following an induced moderate spinal cord injury in T9.
Project description:Summary: Spinal cord injury (SCI) is a damage to the spinal cord induced by trauma or desease resulting in a loss of mobility or feeling. SCI is characterized by a primary mechanical injury followed by a secondary injury in which several molecular events are altered in the spinal cord often resulting in loss of neuronal function. Hypothesis: Spinal cord injury (SCI) induces a cascade of molecular events including the activation of genes associated with transcription factors, inflammation, oxidative stress, ionic imbalance, apoptosis and neuroregeneration which suggests the existance of endogenous reparative attempts. However, not all mechanisms following SCI are well known. Specific Aim: The goal of this project is to analyze the molecular events following spinal cord injury 1 cm above, below, and at the site of injury (T9), aiming at finding potential new targets to improve recovery and therapy. Keywords: other
Project description:Biomarkers to more accurately determine severity and prognosis following spinal cord injury (SCI) are needed to ensure that patients are assigned to the most suitable treatment and rehabilitation regimes. This study aimed to characterise the blood proteome following SCI in clinical rat injury models to identify novel candidate biomarkers and altered biological pathways.
Project description:Summary: Spinal cord injury (SCI) is a damage to the spinal cord induced by trauma or disease resulting in a loss of mobility or feeling. SCI is characterized by a primary mechanical injury followed by a secondary injury in which several molecular events are altered in the spinal cord often resulting in loss of neuronal function. Analysis of the areas directly (spinal cord) and indirectly (raphe and sensorimotor cortex) affected by injury will help understanding mechanisms of SCI. Hypothesis: Areas of the brain primarily affected by spinal cord injury are the Raphe and the Sensorimotor cortex thus gene expression profiling these two areas might contribute understanding the mechanisms of spinal cord injury. Specific Aim: The project aims at finding significantly altered genes in the Raphe and Sensorimotor cortex following an induced moderate spinal cord injury in T9. Keywords: other
Project description:In homeostasis, because of the blood-brain barrier, immune cells rarely infiltrate the central nervous system (CNS). However, after spinal cord injury (SCI), many cells, including both myeloid and T cells, infiltrate the spinal cord. However, the role immune cells play in SCI remains controversial. We are curious whether after SCI there are self-peptides that are released and sensed by T cells that then modulate response to CNS injury.
Project description:We have previously shown that Il1a-knockout (KO) mice exhibit rapid (at day 1) and persistent improvements in locomotion associated with reduced lesion volume compared with Il1b-KO mice and C57BL/6 controls after traumatic spinal cord injury (SCI). To investigate the mechanism by which Il1a mediates its detrimental effect, we analyzed the transcriptome of the injured spinal cord of Il1a-KO, Il1b-KO and C57BL/6 mice at 24 hours after SCI using GeneChip microarrays.