Project description:Noncoding RNAs, especially microRNAs (miRNAs) have been implicated in the regulation of neuronal functions, such as learning, cognition and memory formation. However, the particular miRNAs involved in drug-induced behavioral plasticity are largely unknown. Here we report a novel regulator, miR-218, that inhibits heroin-induced behavioral plasticity. Network propagation-based method revealed several miRNAs that play key roles in drug-addiction, among which, miR-218 was decreased in nucleus accumbens (NAc) after chronic exposure to heroin. Lentiviral overexpression of miR-218 in NAc could inhibit heroin-induced reinforcement in both conditioning place preference (CPP) test and heroin self-administration (SA) experiment. Luciferase activity assay indicated miR-218 could regulate neuroplasticity related genes and directly target Mecp2 3’UTR. Consistently, Mecp2-/y mice exhibited reduced heroin seeking behavior in CPP test. These data reveal a functional role of miR-218 and its target, Mecp2, in the regulation of heroin-induced behavioral plasticity.
Project description:The assembly of the mammalian brain is orchestrated by temporally coordinated waves of gene expression. Post-transcriptional regulation of gene expression by microRNAs (miRNAs) is a key aspect of this program. Indeed, deletion of neuron-enriched miRNAs induces strong developmental phenotypes, and miRNA levels are altered in patients with neurodevelopmental disorders. However, the mechanisms used by miRNAs to instruct brain development remain largely unexplored. Here, we identified miR-218 as a critical regulator of hippocampal assembly. MiR-218 is highly expressed in the hippocampus and enriched in both excitatory principal neurons (PNs) and GABAergic inhibitory interneurons (INs). Early life inhibition of miR-218 results in an adult brain with a predisposition to seizures. Changes in gene expression in the absence of miR-218 suggest that network assembly is impaired. Indeed, we find that miR-218 inhibition results in the disruption of early depolarizing GABAergic signaling, structural defects in dendritic spines, and altered intrinsic membrane excitability. Conditional knockout of miR-218 in INs, but not PNs, is sufficient to recapitulate long-term instability. Finally, de-repressing Kif21b and Syt13, two miR-218 targets, phenocopies the effects on early synchronous network activity induced by miR-218 inhibition. Taken together, the data suggest that miR-218 orchestrates formative events in PNs and INs to produce stable networks.
Project description:Motor-neuron specific microRNA-218 (miR-218) was recently put in the spotlight because of its striking roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons miR-218 is downregulated and its mRNA targets are reciprocally upregulated (de-repressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. Intriguingly, miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity uncovers a previously unappreciated facet of motor neuron specificity that may be particularly susceptible to failure in human ALS, contributes to a view of ALS as a disease with a prominent RNA component and suggests that miR-218 is a potential therapeutic target for motor neuron disease.