Project description:Acetylation and deacetylation of histones and other proteins depend on the opposing activities of histone acetyltransferases and histone deacetylases (HDACs), leading to either positive or negative gene expression changes. The use of HDAC inhibitors (HDACi) has uncovered a role for HDACs in the control of proliferation, apoptosis and inflammation. However, little is known of the roles of specific HDACs in intestinal epithelial cells (IEC). We investigated the consequences of ablating both Hdac1 and Hdac2 in murine IECs gene expression. HDAC1 and HDAC2 conditionally mutated mice were provided by Dr EN Olson (University of Texas Southwestern Medical Center, Dallas, TX) (Montgomery et al., 2007). Floxed HDAC1 and HDAC2 mice were crossed with villin-Cre transgenic mice to insure specific intestinal epithelial cell gene deletion (Madison et al., 2002). Total RNAs from the colon of three control and three HDAC1/2 IEC-specific knockout mice were isolated with the Rneasy kit (Qiagen, Mississauga, ON, Canada).
Project description:Acetylation and deacetylation of histones and other proteins depend on the opposing activities of histone acetyltransferases and histone deacetylases (HDACs), leading to either positive or negative gene expression changes. The use of HDAC inhibitors (HDACi) has uncovered a role for HDACs in the control of proliferation, apoptosis and inflammation. However, little is known of the roles of specific HDACs in intestinal epithelial cells (IEC). We investigated the consequences of ablating both Hdac1 and Hdac2 in murine IECs gene expression. HDAC1 and HDAC2 conditionally mutated mice were provided by Dr EN Olson (University of Texas Southwestern Medical Center, Dallas, TX) (Montgomery et al., 2007). Floxed HDAC1 and HDAC2 mice were crossed with villin-Cre transgenic mice to insure specific intestinal epithelial cell gene deletion (Madison et al., 2002).
Project description:Histone deacetylases (Hdac) remove acetyl groups from proteins, influencing global and specific gene expression. Hdacs control inflammation, as shown by Hdac inhibitor-dependent protection from DSS-induced murine colitis. While tissue-specific Hdac knockouts show redundant and specific functions, little is known of their intestinal epithelial cell (IEC) role. We have shown previously that dual Hdac1/Hdac2 IEC-specific loss disrupts cell proliferation and determination, with decreased secretory cell numbers and altered barrier function. We thus investigated how compound Hdac1/Hdac2 or Hdac2 IEC-specific deficiency alters the inflammatory response. Floxed Hdac1 and Hdac2 and villin-Cre mice were interbred. Compound Hdac1/Hdac2 IEC-deficient mice showed chronic basal inflammation, with increased basal Disease Activity Index (DAI) and deregulated Reg gene colonic expression. DSS-treated dual Hdac1/Hdac2 IEC-deficient mice displayed increased DAI, histological score, intestinal permeability and inflammatory gene expression. In contrast to double knockouts, Hdac2 IEC-specific loss did not affect IEC determination and growth, nor result in chronic inflammation. However, Hdac2 disruption protected against DSS colitis, as shown by decreased DAI, intestinal permeability and caspase-3 cleavage. Hdac2 IEC-specific deficient mice displayed increased expression of IEC gene subsets, such as colonic antimicrobial Reg3b and Reg3g mRNAs, and decreased expression of immune cell function-related genes. Our data show that Hdac1 and Hdac2 are essential IEC homeostasis regulators. IEC-specific Hdac1 and Hdac2 may act as epigenetic sensors and transmitters of environmental cues and regulate IEC-mediated mucosal homeostatic and inflammatory responses. Different levels of IEC Hdac activity may lead to positive or negative outcomes on intestinal homeostasis during inflammation Total RNAs from the colon of three control and three Hdac2 IEC-specific knockout mice were isolated with the Rneasy kit (Qiagen, Mississauga, ON, Canada).
Project description:We have performed quantitative proteomic TandemMassTag to investigate proteomic changes after deletion of epigenetic eraser genes Hdac1 and Hdac2 in intestinal epithelial cells. Both HDAC1 and HDAC2 are epigenetic erasers that drive specific and redundant gene expression patterns, in part by removing acetyl groups on histones. Deletion of these Hdac in intestinal epithelial cell (IEC) in vivo alters intestinal homeostasis, dependent on the Hdac deleted and the level of expression of both. To determine the specific IEC function of HDAC1 and HDAC2, we have performed transcriptomic and quantitative proteomic approaches on IEC deficient in Hdac1 and Hdac2. We have defined changes in both mRNA and protein expression patterns affecting IEC differentiation. We have identified IEC Hdac1- and Hdac2-dependent common as well as specific pathways and biological processes. These findings uncover unrecognized similarities and differences between Hdac1 and Hdac2 in IEC.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:Histone deacetylases (Hdac) remove acetyl groups from proteins, influencing global and specific gene expression. Hdacs control inflammation, as shown by Hdac inhibitor-dependent protection from DSS-induced murine colitis. While tissue-specific Hdac knockouts show redundant and specific functions, little is known of their intestinal epithelial cell (IEC) role. We have shown previously that dual Hdac1/Hdac2 IEC-specific loss disrupts cell proliferation and determination, with decreased secretory cell numbers and altered barrier function. We thus investigated how compound Hdac1/Hdac2 or Hdac2 IEC-specific deficiency alters the inflammatory response. Floxed Hdac1 and Hdac2 and villin-Cre mice were interbred. Compound Hdac1/Hdac2 IEC-deficient mice showed chronic basal inflammation, with increased basal Disease Activity Index (DAI) and deregulated Reg gene colonic expression. DSS-treated dual Hdac1/Hdac2 IEC-deficient mice displayed increased DAI, histological score, intestinal permeability and inflammatory gene expression. In contrast to double knockouts, Hdac2 IEC-specific loss did not affect IEC determination and growth, nor result in chronic inflammation. However, Hdac2 disruption protected against DSS colitis, as shown by decreased DAI, intestinal permeability and caspase-3 cleavage. Hdac2 IEC-specific deficient mice displayed increased expression of IEC gene subsets, such as colonic antimicrobial Reg3b and Reg3g mRNAs, and decreased expression of immune cell function-related genes. Our data show that Hdac1 and Hdac2 are essential IEC homeostasis regulators. IEC-specific Hdac1 and Hdac2 may act as epigenetic sensors and transmitters of environmental cues and regulate IEC-mediated mucosal homeostatic and inflammatory responses. Different levels of IEC Hdac activity may lead to positive or negative outcomes on intestinal homeostasis during inflammation
Project description:We have exploited organoid SILAC approaches that we have previously developed (A SILAC-Based Method for Quantitative Proteomic Analysis of Intestinal Organoids.- Gonneaud A, Jones C, Turgeon N, Lévesque D, Asselin C, Boudreau F, Boisvert FM. -Sci Rep. 2016 Nov 30;6:38195. doi: 10.1038/srep38195) to investigate proteomic changes after deletion of epigenetic eraser genes Hdac1 and Hdac2 in enteroids. Both HDAC1 and HDAC2 are epigenetic erasers that drive specific and redundant gene expression patterns, in part by removing acetyl groups on histones. Deletion of these Hdac in intestinal epithelial cell (IEC) in vivo alters intestinal homeostasis, dependent on the Hdac deleted and the level of expression of both. To determine the intrinsic specific IEC function of HDAC1 and HDAC2, we have performed transcriptomic and quantitative proteomic approaches on enteroids deficient in Hdac1 or Hdac2. We have defined changes in both mRNA and protein expression patterns affecting IEC differentiation. We have identified IEC Hdac1- and Hdac2-dependent common as well as specific pathways and biological processes. These findings uncover unrecognized similarities and differences between Hdac1 and Hdac2 in IEC.