Project description:Nanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physicochemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna. Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag+ release and underwent a significant morphological transformation within 1 h following addition to low ionic strength Daphnia growth media. All AgNWs were highly toxic to D. magna but less toxic than ionic silver. Toxicity varied as a function of AgNW dimension, coating, and solution chemistry. Ag+ release in the media could not account for observed AgNW toxicity. Single-particle inductively coupled plasma mass spectrometry distinguished and quantified dissolved and nanoparticulate silver in microliter-scale volumes of Daphnia magna hemolymph with a limit of detection of approximately 10 ppb. The silver levels within the hemolymph of Daphnia exposed to both Ag+ and AgNW met or exceeded the initial concentration in the growth medium, indicating effective accumulation during filter feeding. Silver-rich particles were the predominant form of silver in hemolymph following exposure to both AgNWs and Ag+. Scanning electron microscopy imaging of dried hemolymph found both AgNWs and silver precipitates that were not present in the AgNW stock or the growth medium. Both organic and inorganic coatings on the AgNW were transformed during ingestion or absorption. Pathway, gene ontology, and clustering analyses of gene expression response indicated effects of AgNWs distinct from ionic silver on Daphnia magna. Four replicates each of five toxicant exposure groups of ~20 animals and four replicates of control, unexposed animals. Each control was compared to each exposed data set for a total of 16 comparisons per chemical condition.
Project description:Nanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physicochemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna. Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag+ release and underwent a significant morphological transformation within 1 h following addition to low ionic strength Daphnia growth media. All AgNWs were highly toxic to D. magna but less toxic than ionic silver. Toxicity varied as a function of AgNW dimension, coating, and solution chemistry. Ag+ release in the media could not account for observed AgNW toxicity. Single-particle inductively coupled plasma mass spectrometry distinguished and quantified dissolved and nanoparticulate silver in microliter-scale volumes of Daphnia magna hemolymph with a limit of detection of approximately 10 ppb. The silver levels within the hemolymph of Daphnia exposed to both Ag+ and AgNW met or exceeded the initial concentration in the growth medium, indicating effective accumulation during filter feeding. Silver-rich particles were the predominant form of silver in hemolymph following exposure to both AgNWs and Ag+. Scanning electron microscopy imaging of dried hemolymph found both AgNWs and silver precipitates that were not present in the AgNW stock or the growth medium. Both organic and inorganic coatings on the AgNW were transformed during ingestion or absorption. Pathway, gene ontology, and clustering analyses of gene expression response indicated effects of AgNWs distinct from ionic silver on Daphnia magna.
Project description:Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxicology has presented new avenues to develop exposure biomarkers and investigate the mode of toxicity of novel chemicals. In the present study we used a 15k oligonucleotide microarray for Daphnia magna, a freshwater crustacean and common indicator species for toxicity, to differentiate between particle specific and ionic silver toxicity and to develop exposure biomarkers for citrate-coated and PVP-coated AgNPs. Gene expression profiles revealed that AgNO3 and AgNPs have distinct expression profiles suggesting different modes of toxicity. However, the gene expression profiles of the different coated AgNPs were similar revealing similarities in the cellular effects of these two particles. Major biological processes disrupted by the AgNPs include protein metabolism and signal transduction. In contrast, AgNO3 caused a downregulation of developmental processes, particularly in sensory development. Metal responsive and DNA damage repair genes were induced by the PVP AgNPs, but not the other treatments. In addition, two specific biomarkers were developed for the environmental detection of PVP AgNPs; although further verification under different environmental conditions is needed. We exposed Daphnia magna to the 1/10 LC50 and LC25 of citrate coated and PVP-coated Ag nanoparticles and Ag+ as AgNO3 for 24-h. For each exposure condition, we performed 6 replicate exposures with 5 individuals in each. All exposures were compared to a unexposed laboratory control.
Project description:Custom D. magna gene expression microarray (Design ID: 023710, Agilent Technologies)were used to characterise gene expression profiles of Daphnia magna neoantes exposed to silver nanoparticles ( AgNPs ) or silver nitrate ( AgNO3 ) for 24 hours.
Project description:Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxicology has presented new avenues to develop exposure biomarkers and investigate the mode of toxicity of novel chemicals. In the present study we used a 15k oligonucleotide microarray for Daphnia magna, a freshwater crustacean and common indicator species for toxicity, to differentiate between particle specific and ionic silver toxicity and to develop exposure biomarkers for citrate-coated and PVP-coated AgNPs. Gene expression profiles revealed that AgNO3 and AgNPs have distinct expression profiles suggesting different modes of toxicity. However, the gene expression profiles of the different coated AgNPs were similar revealing similarities in the cellular effects of these two particles. Major biological processes disrupted by the AgNPs include protein metabolism and signal transduction. In contrast, AgNO3 caused a downregulation of developmental processes, particularly in sensory development. Metal responsive and DNA damage repair genes were induced by the PVP AgNPs, but not the other treatments. In addition, two specific biomarkers were developed for the environmental detection of PVP AgNPs; although further verification under different environmental conditions is needed.
Project description:Cadmium (Cd) is a toxic metal causing sublethal and chronic effects in crustaceans. Omic technologies offer unprecedented opportunities to better understand modes of toxicity by providing a holistic view of the molecular changes underlying physiological disruption. We sought to use gene expression and metabolomic analyses to reveal the processes leading to chronic Cd toxicity in the indicator species, Daphnia magna, after a 24-h sublethal exposure (18 ug/L, corresponding to 1/10 LC50). We first confirmed that metabolites can be detected and identified in small volumes (~3-6 ul) of D. magna hemolymph using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and NMR spectroscopy. We then compared the altered metabolite levels from a mass spectrometry metabolomics study to differentially expressed genes identified by a D. magna 44k oligonucleotide microarray. Metabolomics identified several essential amino acids, nucleotides and fatty acids as decreased in D. magna hemolymph following Cd exposure. Transcriptional changes included decreased levels of digestive enzymes and increased expression of genes related to embryonic development. The integration of metabolomic and transcriptomic profiles, as well as incorporation of results from previous studies, has enabled construction of a conceptual model detailing how sublethal Cd disrupts energy reserves and reproduction resulting in chronic toxicity. Daphnia magna were exposed to 18 micrograms/L Cadmium sulfate for 24 hours. RNA was extracted and hybridized to a custom Daphnia magna microarray to determine genes differentially expressed by the treatment. Two treament experiment:Unexposed and Cd treatment, 6 replicates for each condition
Project description:Daphnia magna is a bio-indicator organism accepted by several international water quality regulatory agencies. Current approaches for assessment of water quality rely on acute and chronic toxicity that provide no insight into the cause of toxicity. Recently, molecular approaches, such as genome wide gene expression responses, are enabling an alternative mechanism based approach to toxicity assessment. While these genomic methods are providing important mechanistic insight into toxicity, statistically robust prediction systems that allow the identification of chemical contaminants from the molecular response to exposure are needed. Here we apply advanced machine learning approaches to develop predictive models of contaminant exposure using a D. magna gene expression dataset for 36 chemical exposures. We demonstrate here that we can discriminate between chemicals belonging to different chemical classes including endocrine disruptors, metals and industrial chemicals based on gene expression. We also show that predictive models based on indices of whole pathway transcriptional activity can achieve comparable results while facilitating biological interpretability. D. magna were exposed to 36 Chemicals and 5 control series in quadruplicate.
Project description:Background: Toxicogenomics provides new opportunities for innovative and proactive approaches to chemical screening, risk assessment, and predictive toxicology. If applied to ecotoxicology, genomics tools could greatly enhance the ability to detect toxicants and understand the modes of toxicity in an environmental setting. However, few studies have yet to illustrate the potential of genomic techniques in ecotoxicology. Objective: Therefore, our objective was to demonstrate the potential utility of gene expression profiling in ecotoxicology using Daphnia magna, a standard aquatic ecotoxicity test organism. Methods: D. magna were exposed to copper, cadmium, and zinc at the 1/10 LC50 for 24 hours. Following each exposure, RNA was isolated, reverse transcribed, and the cDNA was hybridized to a 5000 clone cDNA microarray for D. magna. Differentially expressed cDNAs were sequenced and homology searches revealed each gene product's potential function. Real time PCR was used to verify the differential expression of several genes, and enzyme assays were used to assess the significance of these changes. Results: We identified distinct expression profiles in response to acute copper, cadmium, and zinc exposures and discovered specific biomarkers of exposure including two probable metallothioneins, and a ferritin mRNA with a functional IRE. The gene expression patterns support known mechanisms of metal toxicity and reveal novel modes of action including zinc inhibition of chitinase activity. Conclusions: Using a cDNA microarray for traditional ecotoxicology organism, D. magna, we have identified novel biomarkers of exposure and revealed possible modes of toxicity, providing experimental support for the utility of ecotoxicogenomics. Keywords: comparative toxicant exposure
Project description:This SuperSeries is composed of the following subset Series: GSE29854: Daphnia magna exposed to narcotics and polar narcotics - aniline GSE29856: Daphnia magna exposed to narcotics and polar narcotics - 4-chloroaniline GSE29857: Daphnia magna exposed to narcotics and polar narcotics - 3,5-dichloroaniline GSE29858: Daphnia magna exposed to narcotics and polar narcotics - 2,3,4-trichloroaniline GSE29862: Daphnia magna exposed to narcotics and polar narcotics - ethanol GSE29864: Daphnia magna exposed to narcotics and polar narcotics - isopropanol GSE29867: Daphnia magna exposed to narcotics and polar narcotics - methanol Refer to individual Series
Project description:Daphnia magna has been used extensively to evaluate organism- and population-level responses to pollutants in acute toxicity and reproductive toxicity tests. We have previously reported that exposure to juvenile hormone (JH) agonists results in a reduction of reproductive function and production of male offspring in a cyclic parthenogenesis, D. magna. Recent advances in molecular techniques have provided tools to better understand the responses to pollutants in aquatic organisms including D. magna. DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to JH agonists; methoprene (125, 250 and 500 ppb), fenoxycarb (0.5, 1 and 2 ppb), and epofenonane (50, 100 and 200 ppb). Exposure to these JH analogs resulted in chemical specific patterns of gene expression. The heat map analyses based on hierarchical clustering revealed a similar pattern between treatments with a high dose of methoprene and with epofenonane. In contrast, treatment with low to middle doses of methoprene resulted in similar profiles to fenoxycarb treatments. Hemoglobin and JH epoxide hydrolase genes clustered to be JH-responsive genes. These data suggest that fenoxycarb has high activity as a JH agonist, methoprene shows high toxicity and epofenonane works through a different mechanism compared with other JH analogs, agreeing with data of previously reported toxicity tests. In conclusion, D. magna DNA microarray is useful for classification of JH analogs and identification of JH-responsive genes.