Project description:The processing ability of chicken meat is highly related to its ultimate pH (pHu), which is mainly determined by the amount of glycogen in the muscle at death. The molecular mechanisms involved in variations of those traits for chicken remain to be fully described. For that purpose, two chicken lines were divergently selected on breast meat pHu, i.e. the pHu- and the pHu+ lines. In this study, Chicken Genome Arrays (60 K) were used to compare muscle gene expression profiles of chickens from both lines. The final goal of this experiment is to identify biomarkers of low and high-pHu chicken meat. This study was supported by INRA and the French Ministry of Agriculture through the RFI CASDAR #1309 OPTIVIANDE.
Project description:During the long history of chicken domestication, eyelid color, like skin color and shank color, has been one of the unique physical traits of Chinese indigenous chickens that influence consumer behavior. In China, the Lindian chicken, which has colored feathers, is renowned for the appetizing flavor of its meat and eggs, and its eyelid colors varies from deep to light shades, including black, gray, red, and light yellow. To identify the genes controlling eyelid pigmentation, the expression profiles of black and light-yellow eyelids of Lindian chickens were analyzed with transcriptome sequencing. We detected 13,466 genes expressed in the eyelids, among which 14 were differentially expressed. A KEGG pathway analysis showed that tyrosine metabolism and melanogenesis genes were significantly enriched among these DEGs (corrected P < 0.05). Therefore, we infer that melanin metabolism is one of main factors affecting Lindian chicken eyelid pigmentation. In summary, we have identified the melanin genes responsible for eyelid pigmentation of the Lindian chicken, and also provide a valuable resource for the future study of the physical traits of chickens.
Project description:Since the effect of selection for better feed efficiency on meat characteristics is largely unknown. Thus, the aim of this study was to identify key proteins and pathways regulating both FE traits and meat characteristics. At ten weeks of age, thigh muscle samples from six birds (three with high FCR and three with low FCR value) were selected, and their proteomes were investigated using a label-free proteomic method. Weighted gene co-expression network analysis (WGCNA) was used to screen the key protein modules and pathways. We found that glycolysis/gluconeogenesis, metabolic pathway, carbon metabolism, biosynthesis of amino acids, pyruvate metabolism, and protein processing in endoplasmic reticulum play a key role underlying these two traits. Thus, selection practices for KR should simultaneously consider both trait groups to maintain the high meat quality of slow-growing chicken while improving FE.
Project description:Background: High concentrations of atmospheric ammonia are one of the key environmental stressors affecting broiler production performance, which causes remarkable economic losses as well as potential welfare problems of the broiler industry. Previous reports have demonstrated that high levels of ammonia can alter body fat distribution and meat quality of broilers. However, the molecular mechanisms and metabolic pathways in breast muscle altered by high concentrations of ambient ammonia exposure on broilers are still unknown. Results: This study utilized RNA-Seq to compare the transcriptomes of breast muscles to identify differentially enriched genes in broilers exposed to high or low concentrations of atmospheric ammonia. A total of 267 promising candidate genes were identified by differential expression analysis, among which 67 genes were up-regulated and 189 genes were down-regulated. Bioinformatics analysis suggested that the up and down-regulated genes were involved in the following two categories of cellular pathways and metabolisms: Steroid biosynthesis (gga00100) and peroxisome proliferator-activated receptor (PPAR) signaling pathway (gga03320), which both participate in the lipid metabolism processes. Conclusions: This study suggests that longtime exposure to high concentrations of aerial ammonia can change fat content in breast muscle, meat quality and palatability via altering expression levels of genes participating in important lipid metabolism pathways. This study maybe provides new information that could be used for genetic breeding and nutritional intervention in production practice of broilers industry in the future.
Project description:Domesticated animals all show the same patterns regarding phenotypic traits and behaviour, collectively known as the domestic phenotype. All domestic chicken come from the red junglefowl. By keeping three separate populations of junglefowl and selecting for high, low or intermediate fear responses towards humans, the goal is to in the low fear group start to unlock domestic phenotypes.
Project description:Domesticated animals all show the same patterns regarding phenotypic traits and behaviour, collectively known as the domestic phenotype. All domestic chicken come from the red junglefowl. By keeping three separate populations of junglefowl and selecting for high, low or intermediate fear responses towards humans, the goal is to in the low fear group start to unlock domestic phenotypes. For this study, tissue from the cerebral hemisphere was used.
Project description:Improvement of feed efficiency would increase profitability of the poultry industries by decreasing the amount of feed required for production. Korat (KR) chicken is a new alternative meat-type chicken breed which its meat is recognized for its high protein, low fat and low purine content, whereas its low feed efficiency leads to high cost of production. Deeper understanding on how feed efficiency influences meat quality is poorly elucidated. To fulfill deeper understand molecular key that point the variation in feed efficiency and meat quality, the aim of this study was to investigate molecular pathways and genes involved in feed efficiency and meat quality in thigh of slow-growing KR chicken. A total of 75 males KR chicken were reared in individual cage until 10 weeks of age. Individual feed intake and body weight were collected weekly to calculate Feed Conversion Ratio (FCR) and Residual Feed Intake (RFI). Meat quality parameters were measured in thigh muscles such as ultimate pH (pHu), water-holding capacity (WHC), drip loss (DL), nucleotides content and several biomolecules (amide, …). Base on extreme values of FCR at 10 weeks of ages, 12 birds from the high FCR group (HFCR) and 9 birds from the low FCR group (LFCR) were selected for investigating their transcriptome using an 8×60K Agilent chicken microarray. In addition, a weighted gene coexpression network analysis was performed to detect the relationship between modules of co-expressed genes and feed efficiency, meat quality in thigh muscle. The result in this study indicated that selection on feed efficiency (FCR, RFI) would affect flavor precursor, lipid and protein content in thigh muscle. Based on WGCNA and functional enrichment analysis, results suggested that the key molecular pathways relate to FCR, RFI and meat quality (WHC, DL, IMP, AMP and inosine) in thigh muscle were the pathways of regulation of biological process, biological regulation and regulation of metabolic. Moreover, we revealed four genes there are assembly competence domain (ACD) gene, baculoviral IAP repeat containing 5 (BIRC5) gene, cytochrome c oxidase assembly factor 3 (COA3) gene and myosin light chain 9 (MYL9) gene that might be biomarker gene in feed efficiency and meat quality in thigh muscle. The hypothesis of the current study was alteration feed efficiency in slow-growing chicken will impact meat quality especially in term of texture and flavor.