Project description:The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2. The SLDH was then identified and characterized. Analysis of the purified enzyme revealed its dependence on NAD+/NADP+ and its specificity for L-sorbose production. Fpsldh demonstrated sustained catalytic activity over temperatures ranging from 27 to 37 ℃, with optimal performance observed at pH 8.0-10.0, and it exhibited no requirement for metal ions for activation. The Km of Fpsldh is 7.51 mM. Furthermore, a Bacillus licheniformis host expressing Fpsldh was engineered. The resultant whole-cell catalyst yielded 13.19 g/L of L-sorbose after 33.6 h of transformation, obviating the need for exogenous cofactors. This study enhances our understanding of the catalytic properties of the SLDH family and introduces a novel method for L-sorbose production, a compound of considerable commercial value. KEY POINTS: •New D-sorbitol dehydrogenase from Faunimonas pinastri A52C2 is characterized. •Fpsldh is not PQQ but NAD+/NADP+-dependent. •Bacillus licheniformis expressing Fpsldh can produce 13.19 g/L L-sorbose within 33.6 h.
Project description:The extreme resiliency of lichens to UV radiations makes them an interesting model to find new photoprotective agents acting as UV-blockers and antioxidant. In this research, using a new in vitro method designed to overcome the shortage of material associated to many studies dealing with natural products, we show that the three major compounds isolated from the lichen Vulpicida pinastri, vulpinic acid, pinastric acid and usnic acid, were UV blocker agents. Antioxidant assays evidenced superoxide anion scavenging activity. Combination of the most promising compounds against UVB and UVB radiations, usnic acid, vulpinic acid and pinastric acid, increased the photoprotective activity. At the same time, they were found not cytotoxic on keratinocyte cell lines and photostable in the UVA and UVB ranges. Thus, lichens represent an attractive source to find good candidate ingredients as photoprotective agents. Additionally, the uncommon scalemic usnic acid mixture in this Vulpicida species was proven through electronic circular dichroism calculation.
Project description:We present a genome assembly from an individual male Sphinx pinastri (the Pine Hawkmoth; Arthropoda; Insecta; Lepidoptera; Sphingidae). The genome sequence is 509.2 megabases in span. Most of the assembly is scaffolded into 28 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.3 kilobases in length.