Project description:The overall objective of the heritage project is to study the role of the genotype in cardiovascular,metabolic and hormonal responses to aerobic exercise training and the contribution of regular exercise to changes in several cardiovascular disease and diabetes risk factors. The study cohort in this analysis consists of 473 Caucasian subjects (230 male and 243 female) from 99 nuclear families who completed M-bM-^IM-%58 of the prescribed 60 exercise-training sessions.The phenotypic expression of each individualM-bM-^@M-^Ys genotype is assessed under two well-defined environmental conditions, the pre- and post-training conditions. Here we have made the pre-training data available as used in the article Phillips BE, Williams JP, Gustafsson T, Bouchard C, Rankinen T, et al. (2013) Molecular Networks of Human Muscle Adaptation to Exercise and Age. PLoS Genet 9(3): e1003389. doi:10.1371/journal.pgen.1003389 52 U133+2 profiles (17M-bM-^@M-^S63 yr) generated from pre-exercise muscle biopsy samples from the HERITAGE Family Study. Heritage_pre dataset.
Project description:The overall objective of the heritage project is to study the role of the genotype in cardiovascular,metabolic and hormonal responses to aerobic exercise training and the contribution of regular exercise to changes in several cardiovascular disease and diabetes risk factors. PLEASE NOTE THE POST-TRAINING GENE CHIP FILES HAVE NEVER BEEN RELEASED ON GEO. PLEASE ALSO NOTE THAT DUE TO THE OUTDATED INSULIN ASSAY UTILISED IN THE HERITAGE STUDY, THE INSULIN DATA WAS NOT COMPARABLE WITH ANY MORE RECENT MODERN STUDIES.
Project description:The overall objective of the Heritage Family Study is to study the role of the genotype in cardiovascular, metabolic, and hormonal responses to aerobic exercise training and the contribution of regular exercise to changes in several cardiovascular disease and diabetes risk factors. The study cohort used in this analysis was derived from the pool of 473 Caucasian subjects (230 male and 243 female) from 99 nuclear families who completed ≥58 of the prescribed 60 exercise-training sessions. Utilizing a subsample of this Caucasian cohort, we selected family members from the Quebec center (N=125) to assess the metabolome and lipidome of circulating plasma under two well-defined environmental conditions, the pre- and post-training conditions.
Project description:Background: Exercise has a positive effect on overall health. This study was performed to get an overview of the effects of mixed exercise training on skeletal muscl 18 middle-aged men performed 12 weeks of exercise training (2x endurance training and 1x resistance training), muscle biopsies were taken at baseline and 3 days after the last training session
Project description:The molecular pathways which are activated and contribute to physiological remodeling of skeletal muscle in response to endurance exercise have not been fully characterized. We previously reported that ~800 gene transcripts are regulated following 6 weeks of supervised endurance training in young sedentary males, referred to as the training responsive transcriptome (TRT). Here we utilized this database together with data on biological variation in muscle adaptation to aerobic endurance training in both humans and a novel out-bred rodent model to study the potential regulatory molecules that coordinate this complex network of genes. We identified three DNA sequences representing RUNX1, SOX9, and PAX3 transcription factor binding sites as over-represented in the TRT. In turn, miRNA profiling indicated that several miRNAs targeting RUNX1, SOX9 and PAX3 were down-regulated by endurance training. The TRT was then examined by contrasting subjects who demonstrated the least vs. the greatest improvement in aerobic capacity (low vs. high responders), and at least 100 of the 800 TRT genes were differentially regulated, thus suggesting regulation of these genes may be important for improving aerobic capacity. In high responders, pro-angiogenic and tissue developmental networks emerged as key candidates for coordinating tissue aerobic adaptation. Beyond RNA level validation there were several DNA variants that associated with VO(2)max trainability in the HERITAGE Family Study but these did not pass conservative Bonferroni adjustment. In addition, in a rat model selected across 10 generations for high aerobic training responsiveness, we found that both the TRT and a homologous subset of the human high responder genes were regulated to a greater degree in high responder rodent skeletal muscle. This analysis provides a comprehensive map of the transcriptomic features important for aerobic exercise-induced improvements in maximal oxygen consumption. This data is from skeletal muscle post 6 weeks of endurance exercise training.
Project description:Gene expression profiles generated from skeletal muscle biopsies taken from participants of the HERITAGE family study. Participants completed an endurance training regime in which a skeletal muscle biopsy was taken prior to the start and after the final session of the program. Biopsies were used to generate Affymetrix gene expression microarrays.
Project description:Background: Exercise has a positive effect on overall health. This study was performed to get an overview of the effects of mixed exercise training on skeletal muscl
Project description:The study has been described in the following paper: Gianni Parise, Stuart M. Phillips, Jan J. Kaczor and Mark A. Tarnopolsky (2005). Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radical Biology and Medicine, Volume 39, Issue 2, 15 July 2005, Pages 289-295 We cite the following three paragraphs from this paper: "MATERIALS AND METHODS Subjects Twelve men (71.2 ± 6.5 y) volunteered to participate in a 12 week uni-lateral leg resistance training program (Table 1). All subjects underwent a thorough screening process before being admitted into the study. Subjects were first screened by telephone, and were then subject to a medical evaluation. Consent from their family physician was required, and then all potential subjects underwent a resting electrocardiogram, and a sub-maximal graded exercise test on a bicycle ergometer witih a 12-lead ECG. Exclusion criteria included: evidence of coronary hear disease; congestive heart failure; uncontrolled hypertension; chronic obstructive pulmonary disease; diabetes mellitus; renal failure; major orthopaedic disability; and smoking. None of the subjects had ever participated in a structured exercise program. After subjects were advised of the benefits and risks of participation, subjects gave their written informed consent. The study was approved by the McMaster University and Hamilton Health Sciences Research Ethics Board and conferred to the principles of the declaration of Helsinki. Exercise Training Resistance training was performed three times weekly on non-consecutive days (Monday, Wednesday, and Friday) for 12 weeks, under strict supervision. Prior to and after each training session subjects were required to perform passive stretching. Resistance exercise for each session consisted of 3 sets of 10 repetitions for each of leg press and leg extension. Training progressed from one set of each exercise at 50% of the initial 1 repetition maximum (1RM) to 3 sets at 80% of 1RM over the training period. Training logs were kept to record the volume and intensity of each session. The 1RM was re-evaluated every 2 weeks, and the training load was adjusted accordingly. All exercises were performed on universal strength training equipment (Universal Gym Equipment, Inc., Cedar Rapids, Iowa). Muscle Biopsy A muscle biopsy was taken from the vastus lateralis muscle of both legs before as well as after the training period, 20 cm proximal to the knee joint using a modified Bergström needle (5 mm diameter) with suction modification. The biopsy specimen was dissected of fat and connective tissue and immediately frozen in liquid nitrogen. All samples were stored at -80 °C for subsequent analysis. All subjects were required to abstain from strenuous physical activity for 48 hours prior to the testing session. The non-trained leg performed an acute bout of exercise at the same relative intensity of the training leg to allow for the determination of the effect of training and the effect of acute resistance exercise." Additional Notes: 1) The samples of 8 out 12 were used in the gene expression study. 2) The 2 factors in this study are: 2.1) Leg - Left or Right 2.2) Training - Baseline: samples taken on each leg before exercise - Resistance Training: one of the legs was subject to resistance training followed by acute exercise - Acute Exercise: the other leg had only the acute exercise 3) The baseline samples will be used for right versus left leg comparison to see variance between legs for human experimentation technical issues. The samples from Resistance or Acute Exercise will be compared to corresponding baseline samples to evaluate the effect of both exercise programs on gene expression.
Project description:Low aerobic exercise capacity is a risk factor for diabetes and strong predictor of mortality; yet some individuals are exercise resistant, and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease-risk, we used selective breeding for 15 generation to develop rat models of low- and high-aerobic response to training. Before exercise training, rats selected as low- and high-responders had similar exercise capacities. However, after 8-wks of treadmill training low-responders failed to improve their exercise capacity, while high-responders improved by 54%. Remarkably, low-responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise resistant phenotype segregates with disease risk. Low-responders had impaired exercise-induced angiogenes0is in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low-responders. Low-responders had increased stress/inflammatory signaling and altered TGFM-NM-2 signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease. Cardiac and skeletal muscle from 3 high and 3 low responder rats were examined for differential miRNA expression using Exiqon microarrays
Project description:Low aerobic exercise capacity is a risk factor for diabetes and strong predictor of mortality; yet some individuals are exercise resistant, and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease-risk, we used selective breeding for 15 generation to develop rat models of low- and high-aerobic response to training. Before exercise training, rats selected as low- and high-responders had similar exercise capacities. However, after 8-wks of treadmill training low-responders failed to improve their exercise capacity, while high-responders improved by 54%. Remarkably, low-responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise resistant phenotype segregates with disease risk. Low-responders had impaired exercise-induced angiogenes0is in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low-responders. Low-responders had increased stress/inflammatory signaling and altered TGFβ signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease.