Project description:Saccharomonospora viridis (Schuurmans et al. 1956) Nonomurea and Ohara 1971 is the type species of the genus Saccharomonospora which belongs to the family Pseudonocardiaceae. S. viridis is of interest because it is a Gram-negative organism classified among the usually Gram-positive actinomycetes. Members of the species are frequently found in hot compost and hay, and its spores can cause farmer's lung disease, bagassosis, and humidifier fever. Strains of the species S. viridis have been found to metabolize the xenobiotic pentachlorophenol (PCP). The strain described in this study has been isolated from peat-bog in Ireland. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the family Pseudonocardiaceae, and the 4,308,349 bp long single replicon genome with its 3906 protein-coding and 64 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
Project description:Saccharomonospora viridis is a thermophilic actinomycete that may have biotechnological applications because of its dye decolorizing activity, though the enzymatic oxidative system responsible for this activity remains elusive. Bioinformatic analysis revealed a DyP-type peroxidase gene in the genome of S. viridis DSM 43017 with sequence similarity to peroxidase from dye-decolorizing microbes. This gene, svidyp, consists of 1,215 bp encoding a polypeptide of 404 amino acids. The gene encoding SviDyP was cloned, heterologously expressed in Escherichia coli, and then purified. The recombinant protein could efficiently decolorize several triarylmethane dyes, anthraquinonic and azo dyes under neutral to alkaline conditions. The optimum pH and temperature for SviDyP was pH 7.0 and 70°C, respectively. Compared with other DyP-type peroxidases, SviDyP was more active at high temperatures, retaining>63% of its maximum activity at 50-80°C. It also showed broad pH adaptability (>35% activity at pH 4.0-9.0) and alkali-tolerance (>80% activity after incubation at pH 5-10 for 1 h at 37°C), and was highly thermostable (>60% activity after incubation at 70°C for 2 h at pH 7.0). SviDyP had an accelerated action during the biobleaching of eucalyptus kraft pulp, resulting in a 21.8% reduction in kappa number and an increase of 2.98% (ISO) in brightness. These favorable properties make SviDyP peroxidase a promising enzyme for use in the pulp and paper industries.
Project description:Rationale: Fibrotic hypersensitivity pneumonitis is a debilitating interstitial lung disease driven by incompletely understood immune mechanisms. Objectives: To elucidate immune aberrations in fibrotic hypersensitivity pneumonitis in single-cell resolution. Methods: Single-cell 5’ RNA sequencing was conducted on peripheral blood mononuclear cells and bronchoalveolar lavage cells obtained from 45 patients with fibrotic hypersensitivity pneumonitis, 63 idiopathic pulmonary fibrosis, 4 non-fibrotic hypersensitivity pneumonitis, and 36 healthy controls in the United States and Mexico. Analyses included differential gene expression (Seurat), transcription factor activity imputation (DoRothEA-VIPER), and trajectory analyses (Monocle3/Velocyto-scVelo-CellRank). Measurements and Main Results: Overall, 501,534 peripheral blood mononuclear cells from 110 patients and controls and 88,336 bronchoalveolar lavage cells from 19 patients were profiled. Compared to controls, fibrotic hypersensitivity pneumonitis has elevated classical monocytes (adjusted-p=2.5e-3) and are enriched in CCL3hi/CCL4hi and S100Ahi classical monocytes (adjusted-p<2.2e-16). Trajectory analyses demonstrate that S100Ahi classical monocytes differentiate into SPP1hi lung macrophages associated with fibrosis. Compared to both controls and idiopathic pulmonary fibrosis, fibrotic hypersensitivity pneumonitis patient cells are significantly enriched in GZMhi cytotoxic T cells. These cells exhibit transcription factor activities indicative of TGFb and TNFa/NFkB pathways. These results are publicly available at https://ildimmunecellatlas.org. Conclusions: Single-cell transcriptomics of fibrotic hypersensitivity pneumonitis patients uncovered novel immune perturbations, including previously undescribed increases in GZMhi cytotoxic CD4+ and CD8+ T cells – reflecting this disease’s unique inflammatory T-cell driven nature – as well as increased S100Ahi and CCL3hi/CCL4hi classical monocytes also observed in idiopathic pulmonary fibrosis. Both cell populations may guide the development of new biomarkers and therapeutic interventions.
Project description:Haloalkane dehalogenases can cleave a carbon-halogen bond in a broad range of halogenated aliphatic compounds. However, a highly conserved catalytic pentad composed of a nucleophile, a catalytic base, a catalytic acid, and two halide-stabilizing residues is required for their catalytic activity. Only a few family members, e.g., DsaA, DmxA, or DmrB, remain catalytically active while employing a single halide-stabilizing residue. Here, we describe a novel haloalkane dehalogenase, DsvA, from a mildly thermophilic bacterium, Saccharomonospora viridis strain DSM 43017, possessing one canonical halide-stabilizing tryptophan (W125). At the position of the second halide-stabilizing residue, DsvA contains the phenylalanine F165, which cannot stabilize the halogen anion released during the enzymatic reaction by a hydrogen bond. Based on the sequence and structural alignments, we identified a putative second halide-stabilizing tryptophan (W162) located on the same ?-helix as F165, but on the opposite side of the active site. The potential involvement of this residue in DsvA catalysis was investigated by the construction and biochemical characterization of the three variants, DsvA01 (F165W), DsvA02 (W162F), and DsvA03 (W162F and F165W). Interestingly, DsvA exhibits a preference for the (S)- over the (R)-enantiomers of ?-bromoalkanes, which has not been reported before for any characterized haloalkane dehalogenase. Moreover, DsvA shows remarkable operational stability at elevated temperatures. The present study illustrates that protein sequences possessing an unconventional composition of catalytic residues represent a valuable source of novel biocatalysts.IMPORTANCE The present study describes a novel haloalkane dehalogenase, DsvA, originating from a mildly thermophilic bacterium, Saccharomonospora viridis strain DSM 43017. We report its high thermostability, remarkable operational stability at high temperatures, and an (S)-enantiopreference, which makes this enzyme an attractive biocatalyst for practical applications. Sequence analysis revealed that DsvA possesses an unusual composition of halide-stabilizing tryptophan residues in its active site. We constructed and biochemically characterized two single point mutants and one double point mutant and identified the noncanonical halide-stabilizing residue. Our study underlines the importance of searching for noncanonical catalytic residues in protein sequences.
Project description:Application of thermostable alkaline protease to control the harmful nematodes was investigated in the current study. A total of 14 proteolytic actinomycetes were isolated from Egyptian harsh environments. Out of them, isolate G550 exhibited the highest proteolytic activity (528.9 U/ml). Protease from isolate G550 exhibited high nematicidal activity against M. incognita under laboratory conditions and caused hydrolysis of J2S cuticle. This isolate was identified using molecular techniques and deposited in GenBank under name of Saccharomonospora viridis strain Hw G550 with accession number: MF152631. The G550 protease was extracted, characterized and applied under greenhouse conditions as nematicidal agent. This enzyme exhibited maximum activity and stability at alkaline pH (8) and thermal conditions (50-60?°C). Also, the results showed that, all treatments using protease caused a significant decrease in nematode reproduction and increasing in the plant properties. Finally, the thermo alkaliphilic protease could be used as bio-control agent against RKN.