Project description:We created mice, which are deficient for Myc specifically in cardiac myocytes by crossing crossed Myc-floxed mice (Mycfl/fl) and MLC-2VCre/+ mice. Serial analysis of earlier stages of gestation revealed that Myc-deficient mice died prematurely at E13.5-14.5. Morphological analyses of E13.5 Myc-null embryos showed normal ventricular size and structure; however, decreased cardiac myocyte proliferation and increased apoptosis was observed. BrdU incorporation rates were also decreased significantly in Myc-null myocardium. Myc-null mice displayed a 3.67-fold increase in apoptotic cardiomyocytes by TUNEL assay. We examined global gene expression using oligonucleotide microarrays. Numerous genes involved in mitochondrial death pathways were dysregulated including Bnip3L and Birc2. Keywords: wildtype vs Myc-null
Project description:Protein disulfide isomerase (PDI) is an oxidoreductase responsible for the formation, reduction and isomerization of disulfide bonds of nascent proteins in endoplasmic reticulum (ER). So far, the role of PDI in bone biology has never been characterized using genetically-modified animal models. In this study we generated osteoblast- specific PDI-deficient mice by crossing PDI-floxed (PDIfl/fl) mice with Osx-Cre mice. Compared with their littermate control PDIfl/fl mice, homozygous osteoblast-knockout mice (Osx-Cre/PDIfl/fl) were embryonically lethal, but heterozygous knockout mice (Osx-Cre/PDIfl/wt) displayed significantly pronounced growth retardation and reduced bone length. Besides, the decreases in bone density, osteoblast and osteoclast numbers, collagen fiber content and bone formation rate were observed in Osx-Cre/PDIfl/wt mice. Osteoblast precursors isolated from PDIfl/fl mice were infected with Cre recombinant adenovirus to produce PDI-deficient osteoblasts, followed by induction of differentiation. Osteoblasts deficient of PDI had decreased alkaline phosphatase activity, mineralizing capacity, and differentiation. Quantitative protein mass spectrometry analysis and immunoblotting showed that PDI deficiency markedly decreased the expression of the α-subunits of collagen prolyl 4-hydroxylase (C-P4H), including P4HA1, P4HA2 and P4HA3. These results demonstrate that PDI plays an essential role in osteoblast differentiation and bone formation and is required for the expression of the α-subunit of C-P4H in osteoblasts.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:Oligodendrocyte differentiation and subsequent myelination rely on strict regulatory mechanisms and molecules. Here we aimed at understanding the role of the Rho GTPase RhoA during oligodendrocyte differentiation and myelination in vivo. Using a conditional cell-specific ablation of Rhoa (Rhoa fl/fl mice crossed with Cnp-Cre mice) in oligodendrocytes, we show that RhoA controls the timing and progression differentiation and myelination. To identify putative mechanisms underlying the Rhoa cKO phenotype, we performed quantitative label-free LC-MS/MS proteomics on optic nerves from Rhoa cKO (Rhoa fl/fl Cre+) and control mice (Rhoa fl/fl Cre-) at 30 days post-birth (P30). Manual annotation of the differentially abundant proteins showed a large modulation of several proteins clusters associated with actin cytoskeleton, signal transduction and mitochondria.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.