Project description:Skeletal muscle adapts to exercise training of various modes, intensities and durations with a programmed gene expression response. This study dissects the independent and combined effects of exercise mode, intensity and duration to identify which exercise has the most positive effects on skeletal muscle health. Full details on exercise groups can be found in: Kraus et al Med Sci Sports Exerc. 2001 Oct;33(10):1774-84 and Bateman et al Am J Cardiol. 2011 Sep 15;108(6):838-44.
Project description:Skeletal muscle adapts to exercise training of various modes, intensities and durations with a programmed gene expression response. This study dissects the independent and combined effects of exercise mode, intensity and duration to identify which exercise has the most positive effects on skeletal muscle health. Full details on exercise groups can be found in: Kraus et al Med Sci Sports Exerc. 2001 Oct;33(10):1774-84 and Bateman et al Am J Cardiol. 2011 Sep 15;108(6):838-44. This study uses a middle aged group of subjects that have 3+ markers of metabolic syndrome. One group remains an inactive control, while 5 groups undergo 9 mo supervised exercise training. Exercise groups are as follows: Inactive control (group B); Mild aerobic exercise - low amount/mod intensity (group A); Moderate aerobic exercise - low amt/vig intensity (group D); High aerobic exercise - high amt/vig intensity (group C); resistance training only (group F); and mod aerobic + resistance training (group E). Each group has 10 subjects (5 men and 5 women), however 3 subjects failed array QC, leaving 8 subjects in group E and 9 subjects in group F. Data were all analyzed pre to post training in a RM ANCOVA, covaried for age and sex or regression to determine genotype/phenotype interactions.
Project description:The purpose of this study was to use global gene expression to identify skeletal muscle genes that correlate with exercise-induced Si changes. Longitudinal cohorts from the Studies of Targeted Risk Reduction Intervention through Defined Exercise (STRRIDE) were utilized for vastus lateralis gene expression profiles. Si was determined via intravenous glucose tolerance test pre- and post-training. Pearson product-moment correlation coefficients determined relationships between a) baseline and b) training-induced changes in gene expression and Si after training.
Project description:A single bout of exercise induces changes in gene expression in skeletal muscle. Regular exercise results in an adaptive response involving changes in muscle architecture and biochemistry, and is an effective way to manage and prevent common human diseases such as obesity, cardiovascular disorders and type II diabetes. Our study is a transcriptome-wide analysis of skeletal muscle tissue in a large cohort of untrained Thoroughbred horses before and after a bout of high-intensity exercise and again after an extended period of training. We hypothesized that regular high-intensity exercise training primes the transcriptome for the demands of high-intensity exercise.
Project description:The purpose of this study was to use global gene expression to identify skeletal muscle genes that correlate with exercise-induced Si changes. Longitudinal cohorts from the Studies of Targeted Risk Reduction Intervention through Defined Exercise (STRRIDE) were utilized for vastus lateralis gene expression profiles. Si was determined via intravenous glucose tolerance test pre- and post-training. Pearson product-moment correlation coefficients determined relationships between a) baseline and b) training-induced changes in gene expression and Si after training. Total RNA extracted from human vastus lateralis prior-to and following 8 months of structured aerobic and resistance training
Project description:STRRIDE is an exercise intervention study of different doses and intensities in overweight women and men with the metabolic syndrome. We profiled biopsies from 3 female and 3 male STRRIDE subjects in the “high” exercise group (2,200 kCal/wk). Muscle biopsies were profiled at entry (0h), and after 9 months of aerobic training (24 hrs post-last bout, 96 hrs post last bout, and 336h (14 days) de-training). Included also are pilot expression data from 3 male subjects. Keywords: other
Project description:High intensity aerobic exercise (90% of the maximum heart rate) can effectively suppress cancer proliferation in vivo. However, the molecular effect of aerobic exercise and its relevance to cancer prevention remains uninvestigated. The mRNA-sequencing technique (mRNA-seq) can provide a genome-wide depiction of gene expression changes by aerobic exercise. Mice with colorectal cancer were subjected to high intensity aerobic exercise, and mRNA-seq analysis was performed on heart, lung, and skeletal muscle tissues to analyze the molecular effects of the exercise in a genome-wide manner. The skeletal muscle-derived genes with exercise-dependent differential expressions were further evaluated for their effects on colorectal cancer cell viability. Regular and high intensity aerobic physical activity in the mice produced positive results in comprehensive parameters (i.e., food intake, weight, and survival rate) compared to those in the control groups (healthy and cancer with no exercise). A heatmap of differentially expressed genes revealed markedly different expression patterns between these groups. RNA-seq analysis of 23,282 skeletal muscle-derived genes identified a number of anticancer effector genes. Knockdown and overexpression of selected anticancer genes significantly repressed CT26 proliferation by 20% (p<0.05). Our finding based on the aerobic exercise cancer mouses model suggest that the high intensity exercise resulted in a global change in gene expression patterns, particularly those that affect cancer cell viability.
Project description:High intensity aerobic exercise (90% of the maximum heart rate) can effectively suppress cancer proliferation in vivo. However, the molecular effect of aerobic exercise and its relevance to cancer prevention remains uninvestigated. The mRNA-sequencing technique (mRNA-seq) can provide a genome-wide depiction of gene expression changes by aerobic exercise. Mice with colorectal cancer were subjected to high intensity aerobic exercise, and mRNA-seq analysis was performed on heart, lung, and skeletal muscle tissues to analyze the molecular effects of the exercise in a genome-wide manner. The skeletal muscle-derived genes with exercise-dependent differential expressions were further evaluated for their effects on colorectal cancer cell viability. Regular and high intensity aerobic physical activity in the mice produced positive results in comprehensive parameters (i.e., food intake, weight, and survival rate) compared to those in the control groups (healthy and cancer with no exercise). A heatmap of differentially expressed genes revealed markedly different expression patterns between these groups. RNA-seq analysis of 23,282 skeletal muscle-derived genes identified a number of anticancer effector genes. Knockdown and overexpression of selected anticancer genes significantly repressed CT26 proliferation by 20% (p<0.05). Our finding based on the aerobic exercise cancer mouses model suggest that the high intensity exercise resulted in a global change in gene expression patterns, particularly those that affect cancer cell viability.
Project description:High intensity aerobic exercise (90% of the maximum heart rate) can effectively suppress cancer proliferation in vivo. However, the molecular effect of aerobic exercise and its relevance to cancer prevention remains uninvestigated. The mRNA-sequencing technique (mRNA-seq) can provide a genome-wide depiction of gene expression changes by aerobic exercise. Mice with colorectal cancer were subjected to high intensity aerobic exercise, and mRNA-seq analysis was performed on heart, lung, and skeletal muscle tissues to analyze the molecular effects of the exercise in a genome-wide manner. The skeletal muscle-derived genes with exercise-dependent differential expressions were further evaluated for their effects on colorectal cancer cell viability. Regular and high intensity aerobic physical activity in the mice produced positive results in comprehensive parameters (i.e., food intake, weight, and survival rate) compared to those in the control groups (healthy and cancer with no exercise). A heatmap of differentially expressed genes revealed markedly different expression patterns between these groups. RNA-seq analysis of 23,282 skeletal muscle-derived genes identified a number of anticancer effector genes. Knockdown and overexpression of selected anticancer genes significantly repressed CT26 proliferation by 20% (p<0.05). Our finding based on the aerobic exercise cancer mouses model suggest that the high intensity exercise resulted in a global change in gene expression patterns, particularly those that affect cancer cell viability.
Project description:How skeletal muscle adapts to different types of exercise intensity with age is not known. Adult and old C57BL/6 male mice were assigned to one of three groups: sedentary, daily high-intensity intermittent training (HIIT), or moderate intensity continuous training (MICT) for 4 weeks, compatible with the older group’s exercise capacity. Improvements in body composition, fasting blood glucose, and muscle strength were mostly observed in the MICT old group, while effects of HIIT training in adult and old animals was less clear. Skeletal muscle exhibited structural and functional adaptations to exercise training, as revealed by electron microscopy, OXPHOS assays, respirometry, and muscle protein biomarkers. Transcriptomics analysis of gastrocnemius muscle combined with liver and serum metabolomics unveiled an age-dependent metabolic remodeling in response to exercise training. These results support a tailored exercise prescription approach aimed at improving health and ameliorating age-associated loss of muscle strength and function in the elderly.