Project description:One of the cornerstones of an effective biodefense strategy is the ability to detect infectious agents with a high degree of sensitivity and specificity in the context of a complex sample background. The nature of the B. anthracis genome, however, renders specific detection difficult, due to close homology with B. cereus and B. thuringiensis. We therefore elected to determine the efficacy of next-generation sequencing analysis and microarrays for detection of B. anthracis in an environmental background. We applied next-generation sequencing to titrated genome copy numbers of B. anthracis in the presence of background nucleic acid extracted from aerosol and soil samples. We found next-generation sequencing to be capable of detecting as few as 10 genomic equivalents of B. anthracis DNA per nanogram of background nucleic acid. Detection was accomplished by mapping reads to either a defined subset of reference genomes or to the full GenBank database. Moreover, sequence data obtained from B. anthracis could be reliably distinguished from sequence data mapping to either B. cereus or B. thuringiensis. We also demonstrated the efficacy of a microbial census microarray in detecting B. anthracis in the same samples, representing a cost-effective and high-throughput approach, complementary to next-generation sequencing. This Series contains the NimbleGen array data only (no next-generation sequencing data). B. anthracis DNA was spiked at 6 different concentrations (1, 10, 100, 1000, 10000 and 100000 genome copies) into 1 ng of background nucleic acids extracted either from a soil sample or from an aerosol (air filter) sample. Two replicates of each combination of B. anthracis copy number and background sample were analyzed.
Project description:One of the cornerstones of an effective biodefense strategy is the ability to detect infectious agents with a high degree of sensitivity and specificity in the context of a complex sample background. The nature of the B. anthracis genome, however, renders specific detection difficult, due to close homology with B. cereus and B. thuringiensis. We therefore elected to determine the efficacy of next-generation sequencing analysis and microarrays for detection of B. anthracis in an environmental background. We applied next-generation sequencing to titrated genome copy numbers of B. anthracis in the presence of background nucleic acid extracted from aerosol and soil samples. We found next-generation sequencing to be capable of detecting as few as 10 genomic equivalents of B. anthracis DNA per nanogram of background nucleic acid. Detection was accomplished by mapping reads to either a defined subset of reference genomes or to the full GenBank database. Moreover, sequence data obtained from B. anthracis could be reliably distinguished from sequence data mapping to either B. cereus or B. thuringiensis. We also demonstrated the efficacy of a microbial census microarray in detecting B. anthracis in the same samples, representing a cost-effective and high-throughput approach, complementary to next-generation sequencing.
Project description:To establish the SinR regulon in B. anthracis, gene expression of the fully virulent Ames strain and the isogenic sinR-null strains were compared using expression microarray analysis.
Project description:To establish the SinR regulon in B. anthracis, gene expression of the fully virulent Ames strain and the isogenic sinR-null strains were compared using expression microarray analysis. Cultures of the two B. anthracis strains tested were grown in triplicate in LB broth to mid-exponential phase (O.D.600 = 0.5-0.6) or early stationary phase of growth (O.D.600 = 3.5-3.9). Cells were pelleted through centrifugation and frozen at -80ºC. Total RNA was isolated using a hot phenol method, converted to cDNA, fragmented, labeled, and hybridized to our Affymetrix microarray. Estimates of gene expression were calculated using GCOS software v1.4.
Project description:The spore forming pathogen Bacillus anthracis is the etiologic agent of anthrax in humans and animals. It cycles through infected hosts as vegetative cells and is eventually introduced into the environment where it generates an endospore resistant to many harsh conditions. The endospores are subsequently ingested by the next host to begin the next cycle. Outbreaks of anthrax occur regularly worldwide in wildlife and livestock, and the potential for human infection exists whenever humans encounter infected animals. It is also possible to encounter intentional releases of anthrax spores, as was the case in October 2001. Consequently, it is important to be able to rapidly establish the provenance of infectious strains of B. anthracis. Here, we compare protein expression in seven low-passage wild isolates and four laboratory strains of B. anthracis grown under identical conditions using LC-MS/MS proteomic analysis. Of the 1,023 total identified proteins, 96 had significant abundance differences between wild and laboratory strains. Of those, 28 proteins directly related to sporulation were upregulated in wild isolates, with expression driven by Spo0A, CodY, and AbrB/ScoC. In addition, we observed evidence of changes in cell division and fatty acid biosynthesis between the two classes of strains, despite being grown under identical experimental conditions. These results suggest wild B. anthracis cells are more highly tuned to sporulate than their laboratory cousins, and this difference should be exploited as a method to differentiate between laboratory adapted cultures and low passage wild strains isolated during an anthrax outbreak. This knowledge should distinguish between intentional releases and exposure to strains in nature providing a basis for the type of response by public health officials and investigators.
Project description:Bacillus anthracis causes anthrax infections in mammals. Large-scale mortality resulting from the intentional release of B. anthracis spores represents a potential bioterrorism threat. Inhalational anthrax almost invariably proceeds to fatal systemic infection, characterized by massive bacteremia. A better understanding of host-pathogen interactions is urgently needed for effective treatment of this lethal disease. However, virulence mechanisms used by B. anthracis to survive and multiply in human blood are not completely understood. Identification of genes that are differentially expressed during the growth of B. anthracis in human serum can elucidate how this pathogen successfully colonizes the bloodstream. We compared the transcriptional profile of B. anthracis growing in heat-inactivated human serum to that in LB medium. Genes involved in the biosynthesis of purines, certain amino acids and riboflavin and lipid metabolism, genes encoding ABC transporters, respiratory enzymes and several genes with hypothetical function were identified as being upregulated during growth in serum.