Project description:Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a potentially influential but poorly constrained force on Earth's biogeochemistry. Their versatile metabolism may have boosted primary production and nitrogen cycling in euxinic coastal margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the accumulation of atmospheric oxygen, especially before the Great Oxidation Event and in the low-oxygen conditions of the Proterozoic. In this study, we describe the draft genome sequence of Geitlerinema sp. PCC 9228, formerly Oscillatoria limnetica 'Solar Lake', a mat-forming diazotrophic cyanobacterium that can switch between oxygenic photosynthesis and sulfide-based anoxygenic photosynthesis (AP). Geitlerinema possesses three variants of psbA, which encodes protein D1, a core component of the photosystem II reaction center. Phylogenetic analyses indicate that one variant is closely affiliated with cyanobacterial psbA genes that code for a D1 protein used for oxygen-sensitive processes. Another version is phylogenetically similar to cyanobacterial psbA genes that encode D1 proteins used under microaerobic conditions, and the third variant may be cued to high light and/or elevated oxygen concentrations. Geitlerinema has the canonical gene for sulfide quinone reductase (SQR) used in cyanobacterial AP and a putative transcriptional regulatory gene in the same operon. Another operon with a second, distinct sqr and regulatory gene is present, and is phylogenetically related to sqr genes used for high sulfide concentrations. The genome has a comprehensive nif gene suite for nitrogen fixation, supporting previous observations of nitrogenase activity. Geitlerinema possesses a bidirectional hydrogenase rather than the uptake hydrogenase typically used by cyanobacteria in diazotrophy. Overall, the genome sequence of Geitlerinema sp. PCC 9228 highlights potential cyanobacterial strategies to cope with fluctuating redox gradients and nitrogen availability that occur in benthic mats over a diel cycle. Such dynamic geochemical conditions likely also challenged Proterozoic cyanobacteria, modulating oxygen production. The genetic repertoire that underpins flexible oxygenic/anoxygenic photosynthesis in cyanobacteria provides a foundation to explore the regulation, evolutionary context, and biogeochemical implications of these co-occurring metabolisms in Earth history.
Project description:Cyanobacteria are valuable organisms for studying the physiology of photosynthesis and carbon fixation as well as metabolic engineering for the production of fuels and chemicals. This work describes a novel counter selection method for the cyanobacterium Synechococcus sp. PCC 7002 based on organic acid toxicity. The organic acids acrylate, 3-hydroxypropionate, and propionate were shown to be inhibitory towards PCC 7002 and other cyanobacteria at low concentrations. Inhibition was overcome by a loss of function mutation in the gene acsA. Loss of AcsA function was used as a basis for an acrylate counter selection method. DNA fragments of interest were inserted into the acsA locus and strains harboring the insertion were isolated on selective medium containing acrylate. This methodology was also used to introduce DNA fragments into a pseudogene, glpK. Application of this method will allow for more advanced genetics and engineering studies in PCC 7002 including the construction of markerless gene deletions and insertions. The acrylate counter-selection could be applied to other cyanobacterial species where AcsA activity confers acrylate sensitivity (e.g. Synechocystis sp. PCC 6803).
Project description:Application of genome-scale 'omics approaches to dissect subcellular pathways and regulatory networks governing the fast-growing response of Synechococcus sp. PCC 7002 response to variable irradience levels. We employed controlled cultivation and next-generation sequencing technology to identify transcriptional responses of euryhaline unicellular cyanobacterium Synechococcus sp. PCC 7002 grown under steady state conditions at six irradiance levels ranging from 33 to 760 µmol photons m-2 sec-1.
Project description:Cyanobacteria are valuable organisms for studying the physiology of photosynthesis and carbon fixation as well as metabolic engineering for the production of fuels and chemicals. This work describes a novel counter selection method for the cyanobacterium Synechococcus sp. PCC 7002 based on organic acid toxicity. The organic acids acrylate, 3-hydroxypropionate, and propionate were shown to be inhibitory towards PCC 7002 and other cyanobacteria at low concentrations. Inhibition was overcome by a loss of function mutation in the gene acsA. Loss of AcsA function was used as a basis for an acrylate counter selection method. DNA fragments of interest were inserted into the acsA locus and strains harboring the insertion were isolated on selective medium containing acrylate. This methodology was also used to introduce DNA fragments into a pseudogene, glpK. Application of this method will allow for more advanced genetics and engineering studies in PCC 7002 including the construction of markerless gene deletions and insertions. The acrylate counter-selection could be applied to other cyanobacterial species where AcsA activity confers acrylate sensitivity (e.g. Synechocystis sp. PCC 6803). Cultures were grown in medium modified with 5mM acrylic acid at pH 8 and compared to cultures grown in unmodified medium. Samples were processed in duplicate.
Project description:This transcription profiling analysis of Chlorogloeopsis sp. PCC 9212 is designed to study the role of RfpA, RfpB, and RfpC in response to light color change
Project description:Application of genome-scale 'omics approaches to dissect subcellular pathways and regulatory networks governing the fast-growing response of Synechococcus sp. PCC 7002 response to variable irradience levels.