Project description:Rice tungro disease is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. Infection with RTSV alone does not result in any distinctive symptoms in Taichung Native 1 (TN1) that is one of RTSV susceptive indica rice cultivar. To elucidate the basis of asymptomatic response of rice to RTSV at the gene expression level, global gene response in RTSV-infected TN1 was detected by custom microarray. Keywords: time course, virus infection, disease response
Project description:Rice tungro disease is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. Infection with RTSV alone does not result in any distinctive symptoms in TW16 that is one of RTSV resistant indica rice. To elucidate the basis of asymptomatic response of rice to RTSV at the gene expression level, global gene response in RTSV-infected TN1 was detected by custom microarray. Keywords: time course, virus infection, disease response
Project description:The plant volatile linalool plays important roles in the regulation of defense responses in rice. To clarify the response to linalool in rice at gene expression level, we performed a microarray analysis using the Agilent Rice Oligo Microarray (44k, custom-made; Agilent Technologies, Redwood City, CA, USA). As a result, treatment of linalool caused high upregulation of many defense-related genes including pathogenesis-related (PR) genes in rice.
Project description:The plant volatile linalool plays important roles in the regulation of defense responses in rice. To clarify the response to linalool in rice at gene expression level, we performed a microarray analysis using the Agilent Rice Oligo Microarray (44k, custom-made; Agilent Technologies, Redwood City, CA, USA). As a result, many defense-related genes including pathogenesis-related (PR) genes were upregulated in the linalool synthase-overexpressing transgenic rice.
Project description:The plant volatilebeta-cyclocitral plays important roles in the regulation of defense responses in rice. To clarify the response to beta-cyclocitral in rice at gene expression level, we performed a microarray analysis using the Agilent Rice Oligo Microarray (44k, custom-made; Agilent Technologies, Redwood City, CA, USA). As a result, treatment of linalool caused high upregulation of many defense-related genes including pathogenesis-related (PR) genes in rice.
Project description:Fairy rings are zones of stimulated grass growth by the interaction between the fungi and the plant. In the previous research, we reported the identification of the “fairy”, 2-azahypoxanthine (AHX), produced by the fairy ring-forming fungus and the mechanism of its growth-promoting activity using DNA microarray. We discovered AOH, a common metabolite of AHX in plants. We investigate expression profiling of rice seedlings treated with AHX or AOH for the mechanism of their growth-promoting activity.
Project description:Fairy rings are zones of stimulated grass growth by the interaction between the fungi and the plant. In the previous research, we reported the identification of the “fairy”, ICAproduced by the fairy ring-forming fungus and the mechanism of its growth-inhibiting activity using DNA microarray. We invetigate expression profiling of rice seedlings treated with ICA for the mechanism of its growth-inhibiting activity.
Project description:Rice blast is one of the most serious diseases and is caused by Magnaporthe grisea. SHZ-2, an indica cultivar with broad spectrum resistance to multiple races of the blast pathogen, was crossed to TXZ-13, a blast susceptible but high-quality variety, to produce one BC3 line, BC10 line, which showed strong to moderate blast resistance over eight cropping seasons in the field. In this study, we compared the transcription between blast-resistant and -susceptive lines by custom microarray. Keywords: time course, blast infection, disease response