Project description:Spermiogenesis in Drosophila melanogaster is a highly conserved process and essential for male fertility. In this haploid phase of spermatogenesis, motile sperm are assembled from round cells, flagella are assembled, and needle-shaped nuclei with highly compacted genomes are formed. We aimed at identifying proteins relevant for the maturation phase from spermatids to sperm. As transcription takes place mainly in spermatocytes, and transcripts with relevance for post-meiotic sperm development are translationally repressed for days, we comparatively analysed the prote-ome of larval testes (stages before meiotic divisions), of testes of 1–2-day-old pupae (meiotic and early spermatid stages) and adult flies (late spermatids and sperm). We identified 6677 pro-teins, with 422 solely detected in larval testes, 623 in pupal testes and 634 in adult testes. We analysed a few so far uncharacterized proteins with repect to stage specific expression and im-portance for male fertility. For example, Mst84B (gene CG1988), a very basic cysteine- and lysine-rich nuclear protein, was present in the phase of transition from a histone-based to a pro-tamine-based chromatin structure. CG6332 encodes d-Theg, which is related to the mouse tHEG and human THEG proteins. Mutants of d-Theg lacked sperm in the seminal vesicles and were sterile. The identification of numerous predicted proteins underscores the high potential of pro-teome analysis for future analyses of spermatogenesis.
Project description:Transfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNAs can result in the mis-incorporation of amino acids into nascent polypeptides in a process known as mistranslation. Here, our goal was to test the impacts of different types of mistranslation in the model organism Drosophila melanogaster, as impact of mistranslation depends on the type of amino acid substitution. We created two fly lines - one expressing a serine tRNA variant with valine anticodon and the other with a serine tRNA variant with a threonine anticodon. Using mass spectrometry, we measure the amount of mistranslation at various points in fly development.
Project description:The role of different proteins, Always Early (Aly), Spermatocyte Arrest (Sa), Ubi-p63E (Magn) on the gene expression in spermatocyte differentation was assessed by microarray ABSTRACT: The ubiquitin proteasome system (UPS) regulates many biological pathways by posttranslationally ubiquitinating proteins for degradation. Although maintaining a dynamic balance between free ubiquitin and ubiquitinated proteins is key to UPS function, the mechanisms that regulate ubiquitin homeostasis in different tissues through development are not clear. Here we show that loss of function of Drosophila magellan (magn), the polyubiquitin Ubi-p63E, results in specifically meiotic arrest sterility in males. Expression of ubiquitin from magn/Ubi-p63E contributes predominantly to maintaining the free ubiquitin pool in testes. Function of magn/Ubip63E is required cell autonomously for proper meiotic chromatin condensation, cell cycle progression and spermatid differentiation. magn/Ubi-p63E mutant germ cells develop normally to the spermatocyte stage but arrest at the G2/M transition of meiosis I with lack of protein expression of key meiotic cell cycle regulators Boule and Cyclin B. Loss of function of magn/Ubi-p63E did not strongly affect the spermatocyte transcription program regulated by the tTAF and tMAC genes. Knocking down proteasome function specifically in spermatocytes caused a different meiotic arrest phenotype, suggesting that the magn/Ubi-p63E phenotype may not result from general defects in protein degradation. Our results suggest a conserved role of polyubiquitin genes in male meiosis and a potential mechanism leading to meiosis I maturation arrest. RNA was obtained from whole testes of flies with following mutations: 1) aly[2]/aly[5p], 2) sa[1]/sa[2], 3) magn[12c]/magn[23b] or magn[12c]/magn[12c];pSC2, 4) red[1], e[1] (WT). Each genotype had three biological replicates except magn which had four total biological replicates, two from magn[12c]/[23b] and two from [12c]/[12c]; pSC2