Project description:Body size varies enormously among mammalian species. In small mammals, body growth is typically suppressed rapidly, within weeks, whereas in large mammals, growth is suppressed slowly, over years, allowing for a greater adult size. We recently reported evidence that body growth suppression in rodents is caused in part by a juvenile genetic program that occurs in multiple tissues simultaneously and involves the downregulation of a large set of growth-promoting genes. We hypothesized that this genetic program is conserved in large mammals but that its time course is evolutionarily modulated such that it plays out more slowly, allowing for more prolonged growth. Consistent with this hypothesis, using expression microarray analysis, we identified a set of genes that are downregulated with age in both juvenile sheep kidney and lung. This overlapping gene set was enriched for genes involved in cell proliferation and growth and showed striking similarity to a set of genes downregulated with age in multiple organs of the juvenile mouse and rat, indicating that the multiorgan juvenile genetic program previously described in rodents has been conserved in the 80 million years since sheep and rodents diverged in evolution. Using microarray and real-time PCR, we found that the pace of this program was most rapid in mice, more gradual in rats, and most gradual in sheep. The findings support the hypothesis that a growth-regulating genetic program is conserved among mammalian species but that its pace is modulated to allow more prolonged growth and therefore greater adult body size in larger mammals. Tissues samples were collect from Lung and Kindey respectively with five biological replications of sheep (Ovis aries) that were collected, frozen in liquid nitrogen, and stored at -70 °C and tested on bovine array.
Project description:Body size varies enormously among mammalian species. In small mammals, body growth is typically suppressed rapidly, within weeks, whereas in large mammals, growth is suppressed slowly, over years, allowing for a greater adult size. We recently reported evidence that body growth suppression in rodents is caused in part by a juvenile genetic program that occurs in multiple tissues simultaneously and involves the downregulation of a large set of growth-promoting genes. We hypothesized that this genetic program is conserved in large mammals but that its time course is evolutionarily modulated such that it plays out more slowly, allowing for more prolonged growth. Consistent with this hypothesis, using expression microarray analysis, we identified a set of genes that are downregulated with age in both juvenile sheep kidney and lung. This overlapping gene set was enriched for genes involved in cell proliferation and growth and showed striking similarity to a set of genes downregulated with age in multiple organs of the juvenile mouse and rat, indicating that the multiorgan juvenile genetic program previously described in rodents has been conserved in the 80 million years since sheep and rodents diverged in evolution. Using microarray and real-time PCR, we found that the pace of this program was most rapid in mice, more gradual in rats, and most gradual in sheep. The findings support the hypothesis that a growth-regulating genetic program is conserved among mammalian species but that its pace is modulated to allow more prolonged growth and therefore greater adult body size in larger mammals.
Project description:We have completed the high quality reference genome for domestic sheep (Oar v3.1) and performed a detailed survey of gene expression across different tissues. RNA-seq data of 7 tissue types from the reference female Texel and skin tissue from a Gansu alpine fine wool sheep were sequenced.
Project description:We have completed the high quality reference genome for domestic sheep (Oar v3.1). Early-stage Illumina GA sequence platform sequenced less reads in high GC content regions than in other regions. To read through higher GC content regions, we generated 2 Gb MeDIP-seq data for filling gaps in sheep reference genome assembly.
Project description:We have completed the high quality reference genome for domestic sheep (Oar v3.1) and performed a detailed survey of gene expression across different tissues. RNA-seq data of 7 tissue types from the reference female Texel and skin tissue from a Gansu alpine fine wool sheep were sequenced. Here is the part of the RNA-seq data sequenced in BGI, including 7 tissue types from the reference female Texel and skin type from a Gansu alpine fine wool sheep.
Project description:The discovery and identification of Ovis aries (sheep) miRNAs will further promote the study of miRNA functions and gene regulatory mechanisms. To explore the microRNAome (miRNAome) of sheep in depth, samples were collected that included eight developmental stages: the longissimus dorsi muscles of Texel fetuses at 70, 85, 100, 120, and 135 days, and the longissimus dorsi muscles of Ujumqin fetuses at 70, 85, 100, 120, and 135 d, and lambs at 0 (birth), 35, and 70 d. These samples covered all of the representative periods of Ovis aries growth and development throughout gestation (about 150 d) and 70 d after birth. Texel and Ujumqin libraries were separately subjected to Solexa deep sequencing; 35,700,772 raw reads were obtained overall. We used ACGT101-miR v4.2 to analyze the sequence data. Following meticulous comparisons with mammalian mature miRNAs, precursor hairpins (pre-miRNAs), and the latest sheep genome, we substantially extended the Ovis aries miRNAome. The list of pre-miRNAs was extended to 2,319, expressing 2,914 mature miRNAs. Among those, 1,879 were genome mapped to unique miRNAs, representing 2,436 genome locations, and 1,754 pre-miRNAs were mapped to chromosomes. Furthermore, the Ovis aries miRNAome was processed using an elaborate bioinformatic analysis that examined multiple end sequence variation in miRNAs, precursors, chromosomal localizations, species-specific expressions, and conservative properties. Taken together, this study provides the most comprehensive and accurate exploration of the sheep miRNAome, and draws conclusions about numerous characteristics of Ovis aries miRNAs, including miRNAs and isomiRs.
Project description:α7 nicotinic acetylcholine receptor signaling modulates the inflammatory phenotype of fetal brain microglia: first evidence of interference by iron homeostasis.
Project description:BACKGROUND:Sarcocystis species are intracellular protozoan parasites that can pose a threat to animal health and food safety. The aim of this study was to investigate the prevalence of infection with Sarcocystis infection in sheep from China. RESULTS:In total, 52.51% (335/638) of tissue samples from domestic sheep contained sarcocysts through examination by light microscopy. The organisms were identified as S. tenella and S. arieticanis by molecular assays. Macroscopic S. gigantea and S. medusiformis were not found. The average sarcocysts loading was 18.07?±?29.87 per square centimeter in the myocardium of domestic sheep. Furthermore, two specimens of argali (Ovis ammon) were examined and sarcocysts were found in the myocardium of one animal. According to the sequence of the cox1 gene of sarcocysts from argali, it was speculated as S. tenella. CONCLUSIONS:We found a high prevalence and parasite load of Sarcocystis in sheep from both central and northwest China. This report is the first to indicate that argali may be a natural intermediate host for S. tenella.