Project description:Body size varies enormously among mammalian species. In small mammals, body growth is typically suppressed rapidly, within weeks, whereas in large mammals, growth is suppressed slowly, over years, allowing for a greater adult size. We recently reported evidence that body growth suppression in rodents is caused in part by a juvenile genetic program that occurs in multiple tissues simultaneously and involves the downregulation of a large set of growth-promoting genes. We hypothesized that this genetic program is conserved in large mammals but that its time course is evolutionarily modulated such that it plays out more slowly, allowing for more prolonged growth. Consistent with this hypothesis, using expression microarray analysis, we identified a set of genes that are downregulated with age in both juvenile sheep kidney and lung. This overlapping gene set was enriched for genes involved in cell proliferation and growth and showed striking similarity to a set of genes downregulated with age in multiple organs of the juvenile mouse and rat, indicating that the multiorgan juvenile genetic program previously described in rodents has been conserved in the 80 million years since sheep and rodents diverged in evolution. Using microarray and real-time PCR, we found that the pace of this program was most rapid in mice, more gradual in rats, and most gradual in sheep. The findings support the hypothesis that a growth-regulating genetic program is conserved among mammalian species but that its pace is modulated to allow more prolonged growth and therefore greater adult body size in larger mammals. Tissues samples were collect from Lung and Kindey respectively with five biological replications of sheep (Ovis aries) that were collected, frozen in liquid nitrogen, and stored at -70 °C and tested on bovine array.
Project description:Body size varies enormously among mammalian species. In small mammals, body growth is typically suppressed rapidly, within weeks, whereas in large mammals, growth is suppressed slowly, over years, allowing for a greater adult size. We recently reported evidence that body growth suppression in rodents is caused in part by a juvenile genetic program that occurs in multiple tissues simultaneously and involves the downregulation of a large set of growth-promoting genes. We hypothesized that this genetic program is conserved in large mammals but that its time course is evolutionarily modulated such that it plays out more slowly, allowing for more prolonged growth. Consistent with this hypothesis, using expression microarray analysis, we identified a set of genes that are downregulated with age in both juvenile sheep kidney and lung. This overlapping gene set was enriched for genes involved in cell proliferation and growth and showed striking similarity to a set of genes downregulated with age in multiple organs of the juvenile mouse and rat, indicating that the multiorgan juvenile genetic program previously described in rodents has been conserved in the 80 million years since sheep and rodents diverged in evolution. Using microarray and real-time PCR, we found that the pace of this program was most rapid in mice, more gradual in rats, and most gradual in sheep. The findings support the hypothesis that a growth-regulating genetic program is conserved among mammalian species but that its pace is modulated to allow more prolonged growth and therefore greater adult body size in larger mammals.
Project description:We have completed the high quality reference genome for domestic sheep (Oar v3.1) and performed a detailed survey of gene expression across different tissues. RNA-seq data of 7 tissue types from the reference female Texel and skin tissue from a Gansu alpine fine wool sheep were sequenced.
Project description:We have completed the high quality reference genome for domestic sheep (Oar v3.1). Early-stage Illumina GA sequence platform sequenced less reads in high GC content regions than in other regions. To read through higher GC content regions, we generated 2 Gb MeDIP-seq data for filling gaps in sheep reference genome assembly.
Project description:We have completed the high quality reference genome for domestic sheep (Oar v3.1) and performed a detailed survey of gene expression across different tissues. RNA-seq data of 7 tissue types from the reference female Texel and skin tissue from a Gansu alpine fine wool sheep were sequenced. Here is the part of the RNA-seq data sequenced in BGI, including 7 tissue types from the reference female Texel and skin type from a Gansu alpine fine wool sheep.
Project description:Flavoproteins are a diverse class of proteins that are mostly enzymes and contain as cofactors flavin mononucleotide (FMN) and/or flavin adenine dinucleotide (FAD), which enable them to participate in a wide range of physiological reactions. We have compiled 78 potential proteins building the flavoproteome of Brucella ovis (B. ovis), the causative agent of ovine brucellosis. The curated list of flavoproteins here reported is based on (i) the analysis of sequence, structure and function of homologous proteins, and their classification according to their structural domains, clans, and expected enzymatic functions; (ii) the constructed phylogenetic trees of enzyme functional classes using 19 Brucella strains and 26 pathogenic and/or biotechnological relevant alphaproteobacteria together with B. ovis; and (iii) the evaluation of the genetic context for each entry. Candidates account for ∼2.7% of the B. ovis proteome, and 75% of them use FAD as cofactor. Only 55% of these flavoproteins belong to the core proteome of Brucella and contribute to B. ovis processes involved in maintenance activities, survival and response to stress, virulence, and/or infectivity. Several of the predicted flavoproteins are highly divergent in Brucella genus from revised proteins and for them it is difficult to envisage a clear function. This might indicate modified catalytic activities or even divergent processes and mechanisms still not identified. We have also detected the lack of some functional flavoenzymes in B. ovis, which might contribute to it being nonzoonotic. Finally, potentiality of B. ovis flavoproteome as the source of antimicrobial targets or biocatalyst is discussed. IMPORTANCE Some microorganisms depend heavily on flavin-dependent activities, but others maintain them at a minimum. Knowledge about flavoprotein content and functions in different microorganisms will help to identify their metabolic requirements, as well as to benefit either industry or health. Currently, most flavoproteins from the sheep pathogen Brucella ovis are only automatically annotated in databases, and only two have been experimentally studied. Indeed, certain homologues with unknown function are not characterized, and they might relate to still not identified mechanisms or processes. Our research has identified 78 members that comprise its flavoproteome, 76 of them flavoenzymes, which mainly relate to bacteria survival, virulence, and/or infectivity. The list of flavoproteins here presented allows us to better understand the peculiarities of Brucella ovis and can be applied as a tool to search for candidates as new biocatalyst or antimicrobial targets.
Project description:While sheep can detect and discriminate human emotions through visual and vocal cues, their reaction to human body odors remains unknown. The present study aimed to determine whether sheep (Ovis aries) can detect human odors, olfactorily discriminate stressed from non-stressed individuals, and behave accordingly based on the emotional valence of the odors. Axillary secretions from 34 students were collected following an oral examination (stress odor) or a regular class (non-stress odor). Fourteen female and 15 male lambs were then exposed to these odors through a habituation-dishabituation procedure. The habituation stimulus was presented four times for one minute, followed by the dishabituation stimulus presented once for one minute. Behavioral variables included spatiality relative to target odors, approach/withdrawal, ear positioning, sniffing, ingestion, and vocalization. Both female and male lambs more often positioned their ears backwards/forwards, and asymmetrically when exposed to the dishabituation stimulus, but regardless of their stress or non-stress value. They also changed their approach behavior when exposed to the dishabituation stimuli. Lambs displayed some behavioral signs of discrimination between the habituation and dishabituation odors, but regardless of their relation to stress or non-stress of human donors. In sum, this exploratory study suggests that young sheep respond negatively to the odor of unfamiliar humans, without showing any specific emotional contagion related to the stress odor. This exploratory study suggests young ovines can detect human body odor, a further step toward understanding the human-sheep relationship.
Project description:α7 nicotinic acetylcholine receptor signaling modulates the inflammatory phenotype of fetal brain microglia: first evidence of interference by iron homeostasis.