Project description:The first human case of fulminant gas gangrene caused by Clostridium chauvoei, a pathogen causing ruminant blackleg, was confirmed for a 58-year-old man suffering from diabetes mellitus. The patient developed conspicuous emphysematous gangrene in the right chest wall as well as intravascular gas entrapments and died 2 h after hospital arrival.
Project description:Full genome sequences of 20 strains of Clostridium chauvoei, the etiological agent of blackleg of cattle and sheep, isolated from four different continents over a period of 64 years (1951-2015) were determined and analyzed. The study reveals that the genome of the species C. chauvoei is highly homogeneous compared to the closely related species C. perfringens, a widespread pathogen that affects human and many animal species. Analysis of the CRISPR locus is sufficient to differentiate most C. chauvoei strains and is the most heterogenous region in the genome, containing in total 187 different spacer elements that are distributed as 30 - 77 copies in the various strains. Some genetic differences are found in the 3 allelic variants of fliC1, fliC2 and fliC3 genes that encode structural flagellin proteins, and certain strains do only contain one or two alleles. However, the major virulence genes including the highly toxic C.chauvoei toxin A, the sialidase and the two hyaluronidases are fully conserved as are the metabolic and structural genes of C. chauvoei. These data indicate that C. chauvoei is a strict ruminant-associated pathogen that has reached a dead end in its evolution.
Project description:Clostridium chauvoei is the causative agent of blackleg, a wide spread serious infection of cattle and sheep with high mortality. In this study we have analyzed the sialidase activity of the NanA protein of C. chauvoei and cloned the sialidase gene nanA. Sialidase is encoded as a precursor protein of 722 amino acids with a 26 amino acid signal peptide. The mature sialidase has a calculated molecular mass of 81 kDa and contains the carbohydrate binding module 32 (CBM32, or F5/8 type C domain), the sialic acid binding module CBM40 and the enzymatically active sialidase domain found in all pro- and eukaryotic sialidases. Sialidase activity does not require the CBM32 domain. The NanA protein is secreted by C. chauvoei as a dimer. The nanA gene was found to be conserved and sialidase activity was found in C. chauvoei strains isolated over a period of 50 years from various geographical locations. Antiserum directed against a recombinant 40 kDa peptide containing CBM40 and part of the enzymatically active domain of NanA neutralized the secreted sialidase activity of all C. chauvoei strains tested.
Project description:AIM:Blackleg disease is caused by Clostridium chauvoei in ruminants. Although virulence factors such as C. chauvoei toxin A, sialidase, and flagellin are well characterized, hyaluronidases of C. chauvoei are not characterized. The present study was aimed at cloning and sequence analysis of hyaluronoglucosaminidase (nagH) gene of C. chauvoei. MATERIALS AND METHODS:C. chauvoei strain ATCC 10092 was grown in ATCC 2107 media and confirmed by polymerase chain reaction (PCR) using the primers specific for 16-23S rDNA spacer region. nagH gene of C. chauvoei was amplified and cloned into pRham-SUMO vector and transformed into Escherichia cloni 10G cells. The construct was then transformed into E. cloni cells. Colony PCR was carried out to screen the colonies followed by sequencing of nagH gene in the construct. RESULTS:PCR amplification yielded nagH gene of 1143 bp product, which was cloned in prokaryotic expression system. Colony PCR, as well as sequencing of nagH gene, confirmed the presence of insert. Sequence was then subjected to BLAST analysis of NCBI, which confirmed that the sequence was indeed of nagH gene of C. chauvoei. Phylogenetic analysis of the sequence showed that it is closely related to Clostridium perfringens and Clostridium paraputrificum. CONCLUSIONS:The gene for virulence factor nagH was cloned into a prokaryotic expression vector and confirmed by sequencing.