Project description:Stress constantly challenges plant adaptation to the environment. Of all stress types, arsenic was a major threat during the early evolution of plants. The most prevalent chemical form of arsenic is arsenate, whose similarity to phosphate renders it easily incorporated into cells via the phosphate transporters. Here we found that arsenate stress provokes a notable transposon burst in plants, in coordination with arsenate/phosphate transporter repression, which immediately restricts arsenate uptake. This repression was accompanied by delocalization of the phosphate transporter from the plasma membrane. When arsenate was removed, the system rapidly restored transcriptional expression and membrane localization of the transporter. We identify WRKY6 as an arsenate-responsive transcription factor that mediates arsenate/phosphate transporter gene expression and restricts arsenate-induced transposon activation. Plants therefore have a dual WRKY-dependent signaling mechanism that modulates arsenate uptake and transposon expression, providing a coordinated strategy for arsenate tolerance and transposon gene silencing. Three biological replicates were performed for each sample type. Single channel hybridizations were carried-out using either Affymetrix ATH1 platform or Nimblegen Gene Expression 12x135K platform (Arabidopsis thaliana).
Project description:Stress constantly challenges plant adaptation to the environment. Of all stress types, arsenic was a major threat during the early evolution of plants. The most prevalent chemical form of arsenic is arsenate, whose similarity to phosphate renders it easily incorporated into cells via the phosphate transporters. Here we found that arsenate stress provokes a notable transposon burst in plants, in coordination with arsenate/phosphate transporter repression, which immediately restricts arsenate uptake. This repression was accompanied by delocalization of the phosphate transporter from the plasma membrane. When arsenate was removed, the system rapidly restored transcriptional expression and membrane localization of the transporter. We identify WRKY6 as an arsenate-responsive transcription factor that mediates arsenate/phosphate transporter gene expression and restricts arsenate-induced transposon activation. Plants therefore have a dual WRKY-dependent signaling mechanism that modulates arsenate uptake and transposon expression, providing a coordinated strategy for arsenate tolerance and transposon gene silencing.
Project description:We examined the changes in gene expression in Arabidopsis thaliana grown under arsenate stress. The transcriptional profiling reveals antioxidant activity and repression of the phosphate starvation response. Keywords: dual label, stress response
Project description:We examined the changes in gene expression in Arabidopsis thaliana grown under arsenate stress. The transcriptional profiling reveals antioxidant activity and repression of the phosphate starvation response. Keywords: dual label, stress response This experiment included a comparison of three biological replicate controls against three biological arsenate-stressed replicates with a dye-swap technical replicate for a total of six microarray slide hybridizations.
Project description:We use metabolite profiles of the model plant Arabidopsis thaliana measured on an UPLC-ESI/QqTOF-MS to evaluate uni- and multivariate statistical analysis of redundant features in compound spectra. Comparison was performed between the wild-type Col-0 and the 90.32 mutant. The mutant is a transposon based activation tagged A. th. line from the TAMARA population Schneider et al. [2005]. This particular mutant has an over-expression of the AT5G55880 - AT5G55890 genetic region with unknown function.