Project description:The skeletal muscle system plays an important role in the independence of older adults. In this study we examine differences in the skeletal muscle transcriptome between healthy young and older subjects and (pre‐)frail older adults. Additionally, we examine the effect of resistance‐type exercise training on the muscle transcriptome in healthy older subjects and (pre‐)frail older adults. Baseline transcriptome profiles were measured in muscle biopsies collected from 53 young, 73 healthy older subjects, and 61 frail older subjects. Follow‐up samples from these frail older subjects (31 samples) and healthy older subjects (41 samples) were collected after 6 months of progressive resistance‐type exercise training. Frail older subjects trained twice per week and the healthy older subjects trained three times per week. At baseline genes related to mitochondrial function and energy metabolism were differentially expressed between older and young subjects, as well as between healthy and frail older subjects. Three hundred seven genes were differentially expressed after training in both groups. Training affected expression levels of genes related to extracellular matrix, glucose metabolism, and vascularization. Expression of genes that were modulated by exercise training was indicative of muscle strength at baseline. Genes that strongly correlated with strength belonged to the protocadherin gamma gene cluster (r = −0.73). Our data suggest significant remaining plasticity of ageing skeletal muscle to adapt to resistance‐type exercise training. Some age‐related changes in skeletal muscle gene expression appear to be partially reversed by prolonged resistance‐type exercise training. The protocadherin gamma gene cluster may be related to muscle denervation and re‐innervation in ageing muscle.
Project description:Background: Exercising is know to have an effect on exercising skeletal muscle, but unkown is the effect on non-exercising skeletal muscle. Gene expression changes in the non-exercising skeletal muscle would point to a signalling role of skeletal muscle 9 healthy middle-aged men performed 1 hour of one-legged exercise, before and afterwards muscle biopsies were taken from both legs. Skeletal muscle biopsies were analyzed by microarray.
Project description:Human aging is associated with skeletal muscle atrophy and functional impairment (sarcopenia). Multiple lines of evidence suggest that mitochondrial dysfunction is a major contributor to sarcopenia. We evaluated whether healthy aging was associated with a transcriptional profile reflecting mitochondrial impairment and whether resistance exercise could reverse this signature to that approximating a younger physiological age. Skeletal muscle biopsies from healthy older (N = 25) and younger (N = 26) adult men and women were compared using gene expression profiling, and a subset of these were related to measurements of muscle strength. 14 of the older adults had muscle samples taken before and after a six-month resistance exercise-training program. Before exercise training, older adults were 59% weaker than younger, but after six months of training in older adults, strength improved significantly (P<0.001) such that they were only 38% lower than young adults. As a consequence of age, we found 596 genes differentially expressed using a false discovery rate cut-off of 5%. Prior to the exercise training, the transcriptome profile showed a dramatic enrichment of genes associated with mitochondrial function with age. However, following exercise training the transcriptional signature of aging was markedly reversed back to that of younger levels for most genes that were affected by both age and exercise. We conclude that healthy older adults show evidence of mitochondrial impairment and muscle weakness, but that this can be partially reversed at the phenotypic level, and substantially reversed at the transcriptome level, following six months of resistance exercise training. Keywords: resistance exercise, muscle, aging
Project description:Vitamin D deficiency is common among older adults and has been linked to muscle weakness. Vitamin D supplementation has been proposed as a strategy to improve muscle function in older adults. The aim of this study was to investigate the effect of calcifediol (25-hydroxycholecalciferol) on whole genome gene expression in skeletal muscle of vitamin D deficient frail older adults. A double-blind placebo controlled trial was conducted in vitamin D deficient frail older adults (aged above 65), characterized by blood 25-hydroxycholecalciferol concentrations between 20 and 50 nmol/L. Subjects were randomized across the placebo group (n=12) and the calcifediol group (n=10, 10 µg per day). Muscle biopsies were obtained before and after six months of calcifediol or placebo supplementation and subjected to whole genome gene expression profiling using Affymetrix HuGene 2.1ST arrays. Expression of the vitamin D receptor gene was virtually undetectable in human skeletal muscle biopsies. Calcifediol supplementation led to a significant increase in blood 25-hydroxycholecalciferol levels compared to the placebo group. No difference between treatment groups was observed on strength outcomes. The whole transcriptome effects of calcifediol and placebo were very weak. Correcting for multiple testing using false discovery rate did not yield any differentially expressed genes using any sensible cut-offs. P-values were uniformly distributed across all genes, suggesting that low p-values are likely to be false positives. Partial least squares-discriminant analysis and principle component analysis was unable to separate treatment groups. Calcifediol supplementation did not affect the skeletal muscle transcriptome in frail older adults. Our findings indicate that vitamin D supplementation has no effects on skeletal muscle gene expression, suggesting that skeletal muscle may not be a direct target of vitamin D in older adults.
Project description:Purpose: The main goal of this study is to compare skeletal muscle transcriptome profilings derived from muscle impaired versus healthy subjects. Methods: We use high coverage RNA sequencing of human skeletal muscle biopsies to analyze genome-wide transcriptional changes in human sarcopenia benchmarked to healthy elderly controls.