Project description:Transcriptomic analysis of prefrontal medial cortex, hippocampus and nucleus accumbens of alcohol-preferring and nonpreferring rats
Project description:Animal models provide opportunity to study neurobiological aspects of human alcoholism. Changes in gene expression have been implicated in mediating brain function, including reward system and addiction. The current study aimed to identify novel genes that may underlie ethanol preference. Microarray analysis comparing gene expression in nucleus accumbens (NAc), hippocampus (HP) and prefrontal medial cortex (mPFC) was performed in two rat strains selected for extreme levels of ethanol preference - Warsaw High Preferring (WHP) and Warsaw Low Preferring (WLP). The identified candidate genes may underlie differential ethanol preference in rat model of alcoholism. This is analysis of 18 RNA samples, including 9 technical replicates. Two strains of rats selected for extreme levels of ethanol preference (low preferring WLP and high preferring WHP) were compared. Three brain areas (nucleus accumbens, prefrontal medial cortex and hippocampus) were studied. For each brain area, 6 RNA samples (including 3 technical replicates) were analyzed. Each RNA sample consist of of equal amounts of total RNA from 3 male rats. Comparisons: Nucleus accumbens of WHP vs. Nucleus accumbens of WLP; Prefrontal medial cortex of WHP vs. Prefrontal medial cortex of WLP; Hippocampus of WHP vs. Hippocampus of WLP. 3 biological replicates in each comparison.
Project description:The comparability of gene expression between blood and brain tissues is a central issue in neuropsychiatric research where the analysis of molecular mechanisms in the brain is of high importance for the understanding of the diseases and the discovery of biomarkers. However, the accessibility of brain tissue is limited. Therefore, knowledge about how easily accessible peripheral tissue, e.g. blood, is comparable to and reflects the mechanisms of the brain will help to advance neuropsychiatric research. In our study, we have compared the expression of blood, hippocampus and prefrontal cortex in genetically identical rats by using a genome-wide Affymetrix gene expression microarray covering 29,215 transcripts. We find 56.8% of genes co-expressed in blood and at least one brain tissue and 55.3% of all genes co-expressed in all three tissues simultaneously. Around one third of the genes is expressed selectively in one tissue. This study provides a baseline analysis of absolute gene expression and its differences in blood, PFC and HC brain tissue in genetically identical rats. Our data might be used for first information on gene expression levels of genes of interest in blood and brain under baseline conditions. Gene expression profiling of hippocampus, prefrontal cortex and blood of three Wistar rats.
Project description:There has been an incresing body of epidemiologic and biochemical evidence implying the role of cerebral insulin resistance in Alzheimer-type dementia. For a better understanding of the insulin effect on the central nervous system we performed microarray-based gene expression profiling in the hippocampus, striatum and prefrontal cortex of streptozotocin-induced and spontaneously diabetic Goto-Kakizaki rats as model animals for type 1 and type 2 diabetes, respectively. Following pathway analysis and validation of gene lists by RT-PCR, 30 genes from hippocampus, such as the inhibitory neuropeptide galanin, synuclein gamma and uncoupling protein 2, and 22 genes from the prefrontal cortex, e.g. galanin receptor 2, protein kinase gamma and epsilon, ABCA1, CD47 and the RET protooncogene, were found to exhibit altered expression levels in type 2 diabetic model animals in comparison to non-diabetic control animals. These gene lists proved to be partly overlapping and encompassed genes related to neurotransmission, lipidmetabolism, neuronal development, insulin secretion, oxidative damage and DNA repair. On the other hand, no significant alterations were found in the transcriptomes of the corpus sriatum in the same animals. Changes in the cerebral gene expression profiles seemed to be specific for the type 2 diabetic model, as no such alterations were found in streptozotocin-treated animals. According to our knowledge this is the first characterization of the whole-genome expression changes of specific brain regions in a diabetic model. Our findings shed light on the complex role of insulin signaling in fine-tuning brain functions, and provide further experimental evidence in support of the recently elaborated theory of type 3diabetes. Experiments were performed with 9 animals from each group. Wistar rats (control), streptoztocin-treated Wistar rats (type 1 diabetes) and Goto-Kakizaki rats (type 2 diabetes). The brain was removed and the striatum, hippocampus and prefrontal cortex were dissected. Samples from 3-3 identically treated animals were pooled. That means, 3 biological parallels were prepared from each brain region of type 1 or type 2 diabetic and control animals, amounting to a total of 27 different pooled samples.