Project description:Organohalide-respiring Dehalococcoidia bacteria are one of the few microorganisms capable of transforming chlorinated solvents to benign ethene in anoxic environments. The tceA gene found in these bacteria, coding the trichloroethene-dechlorinating RDase TceA, is frequently detected in contaminated groundwater but not recognized as a biomarker for vinyl chloride detoxification. Here, we demonstrate that the tceA-carrying Dehalococcoides mccartyi (Dhc) strains FL2 and 195 grow with VC as electron acceptor when sufficient vitamin B12 is provided. Global proteomic profiling confirmed the predominant TceA expression in VC-grown Dhc FL2 cells, providing a line of evidence for the implication of TceA in respiratory VC reductive dechlorination.
Project description:Meta-Analyses of Dehalococcoides mccartyi Strain 195 Transcriptomic Profiles Identify a Respiration Rate-Related Gene Expression Transition Point and Interoperon Recruitment of a Key Oxidoreductase Subunit
Project description:Development of a Fluorescence-Activated Cell Sorting Method Coupled with Whole Genome Amplification To Analyze Minority and Trace Dehalococcoides Genomes in Microbial Communities
Project description:Iron sulfide (FeS) nanoparticles have great potential in environmental remediation. Using the representative species Dehalococcoides mccartyi strain 195 (Dhc 195), the effect of FeS on trichloroethene (TCE) dechlorination was studied with hydrogen and acetate as the electron donor and carbon source, respectively. With the addition of 0.2 mM Fe2+ and S2-, the dechlorination rate of TCE was enhanced from 25.46 ± 1.15 to 37.84 ± 1.89 μmol⋅L-1⋅day-1 by the in situ formed FeS nanoparticles, as revealed through X-ray diffraction. Comparing the tceA gene copy numbers between with FeS and without FeS, real-time polymerase chain reaction (PCR) indicated that the abundance of the tceA gene increased from (2.83 ± 0.13) × 107 to (4.27 ± 0.21) × 108 copies/ml on day 12. The transcriptional activity of key genes involved in the electron transport chain was upregulated after the addition of FeS, including those responsible for the iron-sulfur cluster assembly protein gene (DET1632) and transmembrane transport of iron (DET1503, DET0685), cobalamin (DET0685, DET1139), and molybdenum (DET1161) genes. Meanwhile, the reverse transcription of tceA was increased approximately five times on the 12th day. These upregulations together suggested that the electron transport of D. mccartyi strain 195 was enhanced by FeS for apparent TCE dechlorination. Overall, the present study provided an eco-friendly and effective method to achieve high remediation efficiency for organohalide-polluted groundwater and soil.
Project description:Corrinoids are essential cofactors of reductive dehalogenases in Dehalococcoides mccartyi, an important bacterium in bioremediation, yet sequenced D. mccartyi strains do not possess the complete pathway for de novo corrinoid biosynthesis. Pelosinus sp. and Desulfovibrio sp. have been detected in dechlorinating communities enriched from contaminated groundwater without exogenous cobalamin corrinoid. To investigate the corrinoid-related interactions among key members of these communities, we constructed consortia by growing D. mccartyi strain 195 (Dhc195) in cobalamin-free, trichloroethene (TCE)- and lactate-amended medium in cocultures with Desulfovibrio vulgaris Hildenborough (DvH) or Pelosinus fermentans R7 (PfR7) and with both in tricultures. Only the triculture exhibited sustainable dechlorination and cell growth when a physiological level of 5,6-dimethylbenzimidazole (DMB), the lower ligand of cobalamin, was provided. In the triculture, DvH provided hydrogen while PfR7 provided corrinoids to Dhc195, and the initiation of dechlorination and Dhc195 cell growth was highly dependent on the growth of PfR7. Corrinoid analysis indicated that Dhc195 imported and remodeled the phenolic corrinoids produced by PfR7 into cobalamin in the presence of DMB. Transcriptomic analyses of Dhc195 showed the induction of the CbiZ-dependent corrinoid-remodeling pathway and BtuFCD corrinoid ABC transporter genes during corrinoid salvaging and remodeling. In contrast, another operon annotated to encode a putative iron/cobalamin ABC transporter (DET1174-DET1176) was induced when cobalamin was exogenously provided. Interestingly, a global upregulation of phage-related genes was observed when PfR7 was present. These findings provide insights into both the gene regulation of corrinoid salvaging and remodeling in Dhc195 when it is grown without exogenous cobalamin and microbe-to-microbe interactions in dechlorinating microbial communities.
Project description:Dehalococcoides mccartyi 195 (strain 195) and Syntrophomonas wolfei were grown in a sustainable syntrophic coculture using butyrate as an electron donor and carbon source and trichloroethene (TCE) as an electron acceptor. The maximum dechlorination rate (9.9 ± 0.1 μmol day(-1)) and cell yield [(1.1 ± 0.3) × 10(8) cells μmol(-1) Cl(-)] of strain 195 maintained in coculture were, respectively, 2.6 and 1.6 times higher than those measured in the pure culture. The strain 195 cell concentration was about 16 times higher than that of S. wolfei in the coculture. Aqueous H2 concentrations ranged from 24 to 180 nM during dechlorination and increased to 350 ± 20 nM when TCE was depleted, resulting in cessation of butyrate fermentation by S. wolfei with a theoretical Gibbs free energy of -13.7 ± 0.2 kJ mol(-1). Carbon monoxide in the coculture was around 0.06 μmol per bottle, which was lower than that observed for strain 195 in isolation. The minimum H2 threshold value for TCE dechlorination by strain 195 in the coculture was 0.6 ± 0.1 nM. Cell aggregates during syntrophic growth were observed by scanning electron microscopy. The interspecies distances to achieve H2 fluxes required to support the measured dechlorination rates were predicted using Fick's law and demonstrated the need for aggregation. Filamentous appendages and extracellular polymeric substance (EPS)-like structures were present in the intercellular spaces. The transcriptome of strain 195 during exponential growth in the coculture indicated increased ATP-binding cassette transporter activities compared to the pure culture, while the membrane-bound energy metabolism related genes were expressed at stable levels.
Project description:Transcriptional profiling of the Donna II mixed community containing Dehalococcoides mccartyi strain 195 comparing a batch starved control to the mixed community being fed 1,2,3,4-tetrachlorobenzene as an electron acceptor. The goal was to determine which transcripts are regulated in response to a shift in a different electron acceptor rather than the consistent tetrachloroethene (PCE) that the parent reactor was maintained on.