Project description:Aims: We performed an analysis of maltotriose utilization by 52 Saccharomyces yeast strains able to ferment maltose efficiently and correlated the observed phenotypes with differences in the copy number of genes possibly involved in maltotriose utilization by yeast cells. Methods and Results: The analysis of maltose and maltotriose utilization by laboratory and industrial strains of the species Saccharomyces cerevisiae and Saccharomyces pastorianus (a natural S. cerevisiae/Saccharomyces bayanus hybrid) was carried out using microscale liquid cultivation, as well as in aerobic batch cultures. All strains utilize maltose efficiently as a carbon source, but three different phenotypes were observed for maltotriose utilization: efficient growth, slow/delayed growth and no growth. Through microarray karyotyping and pulsed-field gel electrophoresis blots, we analysed the copy number and localization of several maltose-related genes in selected S. cerevisiae strains. While most strains lacked the MPH2 and MPH3 transporter genes, almost all strains analysed had the AGT1 gene and increased copy number of MALx1 permeases. Conclusions: Our results showed that S. pastorianus yeast strains utilized maltotriose more efficiently than S. cerevisiae strains and highlighted the importance of the AGT1 gene for efficient maltotriose utilization by S. cerevisiae yeasts. Significance and Impact of the Study: Our results revealed new maltotriose utilization phenotypes, contributing to a better understanding of the metabolism of this carbon source for improved fermentation by Saccharomyces yeasts.
Project description:Six strains of Saccharomyces cerevisiae were grown in four different environments representing a continuum of rich and poor natural conditions Keywords: Stress response, genetic diversity
Project description:To profile off-target effects of psychoactive drugs, 87 genome-wide drug fitness assays (of which 5 were performed in duplicate) and 18 genome-wide control experiments were performed in Saccharomyces cerevisiae. Heterozygous and homozygous yeast single gene deletion strains from the BY collection of the Saccharomyces cerevisiae genome deletion consortium were used.
Project description:To characterize the ecological interactions among S. cerevisiae strains coming from the same geographical area, we examined the fitness of two natural isolates from San Giovese grapes, alone or in competition, in synthetic wine must (SWM). We performed genome-wide analyses in order to identify the genes involved in yeast competition and cooperation.
Project description:To gather more in-depth knowledge of the Mtl1p mechanosensor's role in Saccharomyces cerevisiae metabolism, we conducted a comparative metabolomic analysis of two Saccharomyces cerevisiae strains: the wild type and mtl1Δ, which carries a deletion of the mechanosensor Mtl1p. Both strains were grown under normal conditions at 27°C. The most significant metabolic changes between these strains were related to amino acid metabolism, purine metabolism, and carboxylic acid metabolism.
Project description:To gather more in-depth knowledge of the Mtl1p mechanosensor's role in Saccharomyces cerevisiae metabolism, we conducted a comparative metabolomic analysis of two Saccharomyces cerevisiae strains: the wild type and mtl1Δ, which carries a deletion of the mechanosensor Mtl1p. Both strains were grown under normal conditions at 27°C. The most significant metabolic changes between these strains were related to amino acid metabolism, purine metabolism, and carboxylic acid metabolism.