Project description:Genome wide high resolution assay of copy number in a series of frozen, microdissected head and neck cancers originating from the oral cavity. The objective was to characterize areas of amplification and deletion in head and neck cancers arising from the oral cavity subsite.
Project description:Goal: To identify copy number variation in normal individuals using high density, non-polymorphic oligonucleotide probes Background DNA sequence diversity within the human genome may be more greatly affected by copy number variations (CNVs) than single nucleotide polymorphisms (SNPs). Although the importance of CNVs in genome wide association studies (GWAS) is becoming widely accepted, the optimal methods for identifying these variants are still under evaluation. We have previously reported a comprehensive view of CNVs in the HapMap DNA collection using high density 500K EA (Early Access) SNP genotyping arrays which revealed greater than 1,000 CNVs ranging in size from 1kb to over 3Mb. Although the arrays used most commonly for GWAS predominantly interrogate SNPs, CNV identification and detection does not necessarily require the use of DNA probes centered on polymorphic nucleotides and may even be hindered by the dependence on a successful SNP genotyping assay. Results In this study, we have designed and evaluated a high density array predicated on the use of non-polymorphic oligonucleotide probes for CNV detection. This approach effectively uncouples copy number detection from SNP genotyping and thus has the potential to significantly improve probe coverage for genome-wide CNV identification. This array, in conjunction with PCR-based, complexity-reduced DNA target, queries over 1.3M independent NspI restriction enzyme fragments in the 200bp to 1100bp size range, which is a several fold increase in marker density as compared to the 500K EA array. In addition, a novel algorithm was developed and validated to extract CNV regions and boundaries. Conclusions Using a well-characterized pair of DNA samples, close to 200 CNVs were identified, of which nearly 50% appear novel yet were independently validated using quantitative PCR. The results indicate that non-polymorphic probes provide a robust approach for CNV identification, and the increasing precision of CNV boundary delineation should allow a more complete analysis of their genomic organization. Keywords: Copy number variation (CNV) detection
Project description:Goal: To identify copy number variation in normal individuals using high density, non-polymorphic oligonucleotide probes Background DNA sequence diversity within the human genome may be more greatly affected by copy number variations (CNVs) than single nucleotide polymorphisms (SNPs). Although the importance of CNVs in genome wide association studies (GWAS) is becoming widely accepted, the optimal methods for identifying these variants are still under evaluation. We have previously reported a comprehensive view of CNVs in the HapMap DNA collection using high density 500K EA (Early Access) SNP genotyping arrays which revealed greater than 1,000 CNVs ranging in size from 1kb to over 3Mb. Although the arrays used most commonly for GWAS predominantly interrogate SNPs, CNV identification and detection does not necessarily require the use of DNA probes centered on polymorphic nucleotides and may even be hindered by the dependence on a successful SNP genotyping assay. Results In this study, we have designed and evaluated a high density array predicated on the use of non-polymorphic oligonucleotide probes for CNV detection. This approach effectively uncouples copy number detection from SNP genotyping and thus has the potential to significantly improve probe coverage for genome-wide CNV identification. This array, in conjunction with PCR-based, complexity-reduced DNA target, queries over 1.3M independent NspI restriction enzyme fragments in the 200bp to 1100bp size range, which is a several fold increase in marker density as compared to the 500K EA array. In addition, a novel algorithm was developed and validated to extract CNV regions and boundaries. Conclusions Using a well-characterized pair of DNA samples, close to 200 CNVs were identified, of which nearly 50% appear novel yet were independently validated using quantitative PCR. The results indicate that non-polymorphic probes provide a robust approach for CNV identification, and the increasing precision of CNV boundary delineation should allow a more complete analysis of their genomic organization. A set of five genomic DNA samples containing different numbers of X chromosomes (1X to 5X sample set, including NA15510 and NA10851) were hybridized to Nsp copy number (CN) arrays in triplicate to evaluate detection of copy number variation using high density, non-polymorphic oligonucleotide probes. 6 Hapmap samples were hybridized to Nsp CN arrays to evaluate Mendelian inheritance of CNVs.
Project description:Genome wide high resolution assay of copy number in a series of frozen, microdissected head and neck cancers originating from the oral cavity. The objective was to characterize areas of amplification and deletion in head and neck cancers arising from the oral cavity subsite. 31 tumors were snap frozen at the time of surgical resection, microdissected to >70% tumor content, and DNA extracted.
Project description:Copy number variations (CNVs) constitute the largest portion of the human genome variation. We determined a genome-wide high resolution SNP/CNV haplotype structure of Asians, by analyzing a collection of complete hydatidiform moles (CHMs) of Japanese, using high-density DNA arrays. CHMs are tissues carrying duplicated haploid genomes derived from single sperms, and are suitable material for the detection of CNVs, because they are expected to reveal greater signal to noise ratio in hybridization experiments. Also, the absence of heterozygosity ensures straightforward CNV interpretation without being bothered by overlapping CNV segments. We genotyped 100 CHM genomes using Affymetrix SNP 6.0 and Illumina 1M-duo, created a definitive haplotype map including 1.7 million SNPs and 2339 CNV region (CNVR) that is presented as D-HaploDB Phase 4.1.
Project description:Primary uveal melanomas show multiple chromosomal aberrations. To identify genome variation in six human primary uveal melanomas, genome wide copy number variation (CNV) analyses were carried out in human primary uveal melanoma samples using array comparative genome hybridization.
Project description:Copy number variation (CNV) is an important type of genetic variation contributing to phenotypic differences among mammals. Up to now, GWAS analysis using CNV called by array CGH is lacking in livestock like Holstein cattle. The objectives of this work are to identify CNVs using high-density aCGH data and explore functional CNVs which are associated with complex traits by GWAS method in Holstein cattle. In this study, we reported a systematic CNV association analysis of CNVs and 39 complex production traits in Holsteins. This research identified 1043 CNV regions (CNVRs) by array CGH data in 47 Holstein bulls. Using a genome-wide association analysis (GWAS) approach, we identified 79 significant CNVRs associated with at least one complex traits after false discovery rate (FDR) correction. Notably, 24 CNVRs were markedly related to daughter pregnancy rate (DPR). This study observed the pleiotropy phenomenon of 39 CNV loci which can simultaneously regulate at least 2 complex traits. In summary, the significant CNVs identified in this research could be utilized additional molecular markers for genetic improvement programs in Holsteins.
Project description:The aim of the study was to assess whether changes in the expression of miRs could be implicated in the modulation of the NOTCH pathway in head and neck paragangliomas. Several miRs, notably including families (miR-34s, miR-200s) that target the NOTCH signaling pathway, resulted differentially expressed in paragangliomas compared to the reference normal tissue, i.e., Jacobson's nerve.