Project description:Transcriptional profiling of new born mouse kidney collecting duct (CD) cells comparing the infuence of gestational high salt stress on gene expression remolding of BdkrB2 receptor knockout CD cells with that of BdkrB2 receptor wild type CD cells. The BdkrB2 receptor has been shown to be playing a role in renal vascular tone, kidney secretion and reabsorption function, normal kidney development, while impaired BdkrB2 receptor in kidney shown being associated with renal agenesis and renal dysplasia. Goal was to determine the effects of BdkrB2 receptor knockout together with gestational high salt stress on collecting duct gene expression pattern. Single color microarray experiment, BdkrB2 knockout new born mouse CD cells vs. BdkrB2 WT mosue CD cells with both on gestational high salt stress. Biological replicates: 3 BdkrB2 null replicates, 3 BdkrB2 WT replicates. Expression level of each sample was normalized to WT1 replicate.
Project description:Transcriptional profiling of new born mouse kidney collecting duct (CD) cells comparing the infuence of gestational high salt stress on gene expression remolding of BdkrB2 receptor knockout CD cells with that of BdkrB2 receptor wild type CD cells. The BdkrB2 receptor has been shown to be playing a role in renal vascular tone, kidney secretion and reabsorption function, normal kidney development, while impaired BdkrB2 receptor in kidney shown being associated with renal agenesis and renal dysplasia. Goal was to determine the effects of BdkrB2 receptor knockout together with gestational high salt stress on collecting duct gene expression pattern.
Project description:The Ca2+/CaM-dependent protein kinase 2-delta (CAMK2D) has been proposed to be involved in vasopressin signaling in the renal collecting duct, which controls water and salt excretion by the kidney. RNA sequancing and quantitative proteomics analyses identified the expression of multiple CAMK2 isoforms, with CAMK2D being the most abundant in collecting duct cells. To investigate the role of CAMK2D in regulating RNA expression in response to vasopressin signaling, the transcriptome of CRISPR/Cas9-mediated Camk2d knock-out mpkCCD cells was profiled using RNA-Seq in the presence of vasopressin analogue dDAVP.
Project description:We would like to know the gene expression pattern in absence of transcription factor GATA2 in adult renal collecting duct We used Gata2 flox::Pax8-rtTA::Tet-Cre to make a doxycycline induced Gata2 renal tubule cell specific knockout mice We performed microarray analyses using DBA-lectin and magnetic beads purifed collecting duct cells from WT (n=3) or Gata2 CKO mice (n=3) at 4-weeks after doxycycline induction
Project description:Analysis of expression changes in renal collecting duct epithelial cells by adenoviral mediated Krüppel like transcription factor 5 (KLF5) overexpression. KLF5 is a key regulator of static and inflammatory stage in renal collecting duct epithelial cells. We thought these results provide insights into downstream genes of KLF5 in renal collecting duct epithelial cells.
Project description:Identification of gene expressed in the enriched inner medullary collecting duct cells in rat. Experiment Overall Design: Rat inner medullary collecting duct (IMCD) cells were isolated from 7 male Sprage-Dawley rats by collagenase and hyaluronidase digestion and follow by low speed centrifugation. The non-IMCD cells were collected by centrifugation of supernatant of enriched IMCD samples. Experiment Overall Design: Total RNA about 3 ug were used per microarray (Rat 230 2.0 Genechip array). Experiment Overall Design: The experiments were repeat 3 times (3 pairs of IMCD VS non-IMCD)
Project description:Transcriptional profiling of Embryonic Day 14.5 mouse kidneys comparing the infuence of gestational high salt stress on gene expression remolding of BdkrB2 receptor null mice with that of BdkrB2 receptor wild type mice. The BdkrB2 receptor has been shown to be playing a role in renal vascular tone, kidney secretion and reabsorption function, normal kidney development, while impaired BdkrB2 receptor in kidney shown being associated with renal agenesis and renal dysplasia. Goal was to determine the effects of BdkrB2 receptor knockout together with gestational high salt stress on renal gene expression pattern. Two-condition experiment, BdkrB2 null mouse kidney vs. BdkrB2 WT mosue kidney with both on gestational high salt stress . Biological replicates: 3 BdkrB2 null/WT replicates, 3 BdkrB2 WT/null replicates, all 6 replicates were duplicated.
Project description:Phosphorylation of the aquaporin-2 (AQP2) water channel at four COOH-terminal serines plays a central role in the regulation of water permeability of the renal collecting duct. The level of phosphorylation at these sites is determined by a balance between phosphorylation by protein kinases and dephosphorylation by phosphatases. The phosphatases that dephosphorylate AQP2 have not been identified. Here, we use large-scale data integration techniques to identify serine-threonine phosphatases likely to interact with AQP2 in renal collecting duct principal cells. As a first step, we have created a comprehensive list of 38 S/T phosphatase catalytic subunits present in the mammalian genome. Then we used Bayes’ theorem to integrate available information from large-scale data sets from proteomic and transcriptomic studies in order to rank the known S/T phosphatases with regard to the likelihood that they interact with AQP2 in renal collecting duct cells. To broaden the analysis, we have generated new proteomic data (LC-MS/MS) identifying 4538 distinct proteins including 22 S/T phosphatases in cytoplasmic fractions from native inner medullary collecting duct cells from rats. The official gene symbols corresponding to the top-ranked phosphatases (common names in parentheses) were: Ppp1cb (PP1-beta), Ppm1g (PP2C), Ppp1ca (PP1-alpha), Ppp3ca (PP2-B or calcineurin), Ppp2ca (PP2A-alpha), Ppp1cc (PP1-gamma), Ppp2cb (PP2A-beta), Ppp6c (PP6C) and Ppp5c (PP5). This ranking correlates well with results of prior reductionist studies of ion and water channels in renal collecting duct cells.
Project description:Analysis of expression changes in renal collecting duct epithelial cells by adenoviral mediated Krüppel like transcription factor 5 (KLF5) overexpression. KLF5 is a key regulator of static and inflammatory stage in renal collecting duct epithelial cells. We thought these results provide insights into downstream genes of KLF5 in renal collecting duct epithelial cells. Total RNAs were isolated from adenovirally-mediated KLF5 over expressed cultured mIMCD-3 cells or control adenovirus infected mIMCD-3. We analyzed these two gene expression profiles after 24 hours after infection.
Project description:Ureteric bud (UB) is the embryonic kidney progenitor tissue that gives rise to the collecting duct and lower urinary tract. UB-like structures generated from human pluripotent stem cells by previously reported methods show limited developmental ability and limited branching. Here we report a new method to generate UB organoids that possess epithelial polarity and tubular lumen and repeat branching morphogenesis. We also succeeded in monitoring UB tip cells by utilizing the ability of tip cells to uptake very-low-density lipoprotein, cryopreserving UB progenitor cells and expanding UB tip cells that can reconstitute the organoids and differentiate into collecting duct progenitors. Moreover, we successfully reproduced some phenotypes of multicystic dysplastic kidney (MCDK) using the UB organoids. These methods will help elucidate the developmental mechanisms of UB branching and develop a selective differentiation method for collecting duct cells, contributing to the creation of disease models for congenital renal abnormalities.