Project description:Tomato is one of the most important crops for human consumption. Unfortunately, its production is affected by diseases caused by pathogens such as the actynomicete Clavibacter michiganensis subsp. michiganens (Cmm). This pathogen is the causal agent of the bacterial canker of tomato, considered one of the most devastating tomato diseases. To date, there are not resistant varieties of commercial tomato against Cmm. However, there are wild tomato species resistant to Cmm. Using massive sequencing, we obtained the transcriptomes of the wild tomato species Solanum arcanum LA2157 and the commercial tomato Solanum lycopersicum cv. Ailsa Craig at 8 and 24 hours after Cmm challenge. We identified potential tomato tolerance-related genes by three approaches: mapping the reads to S. lycopersicum reference genome SL3.0, performing a semi de novo transcriptome assembly and a de novo transcriptome assembly. Some functional groups such as oxylipin biosynthetic process response to wounding, response to cytokinin among others, were enriched in both tomato species, suggesting a similar response, however, genes that encode proteins such as the Polyphenol oxidase E, Ankyrin and Leucine Rich Repeat receptors were overexpressed mainly in the wild tomato species, suggesting a possible role in the defense response. Here, we uncovered new candidate genes potentially related to bacterial canker tomato defense.
Project description:We describe an application of deep sequencing and de novo assembly of short RNA reads to investigate small interfering (si)RNAs mediated immunity in leaf samples from eight tree taxa naturally occurring in Wytham Woods, Oxfordshire, UK. BLAST search for homologues of contigs in the GenBank identified siRNA populations against a number of RNA viruses and a Ty1-copia retrotransposons in these tree species. Small RNA sequencing and de novo assembly
Project description:For this project, we have sequenced, assembled and annotated a transcriptome of a diploid wheat Triticum urartu accession PI 428198. The sequencing libraries were prepared from shoot and root tissues harvested from 2-3 week old seedlings. All sequencing was carried out on the Illumina HiSeq platform using the 100 bp pair-end protocol (248.5 million reads). The assembly was constructed using a multiple k-mer approach with a de novo assembly algorithm implemented in CLC Genomics Workbench 5.5 and additional redundancy reduction with CD-HIT and blast2cap3 programs. Open reading frames and proteins were predicted using BLASTX searches and a findorf algorithm.
Project description:This dataset contains Xdrop followed by oxford nanopore long read sequencing performed in target tRNA gene deletion clones in HAP1 (t72) and HepG2 (t15). By applying de novo assembly based approach to Xdrop-LRS data, we identified Cas9-induced on-target genomic alteration.
Project description:This dataset contains Xdrop followed by oxford nanopore long read sequencing performed in target tRNA gene deletion (t8) and intergenic region deletion (i50) clones in HepG2 . By applying de novo assembly based approach to Xdrop-LRS data, we identified Cas9-induced on-target genomic alteration.
Project description:Using RNA sequencing and de novo transcript assembly, we identified 4516 lncRNAs expressed in 8 different stages of B cell development and activation. Chromatin immuno-precipitation sequencing was used to classify a substantial fraction (38%) of these lncRNAs as enhancer-associated or promoter-associated RNAs (eRNAs or pRNAs). A catalogue of lncRNAs expressed in eight murine B cell populations