Project description:Messenger (m)RNA export from the nucleus is essential for eukaryotic gene expression. Here, we identify a transcript-selective nuclear export mechanism affecting certain human transcripts, enriched for functions in genome duplication and repair, controlled by inositol polyphosphate multikinase (IPMK), an enzyme catalyzing inositol polyphosphate and phosphoinositide turnover. We studied transcripts encoding RAD51, a protein essential for DNA repair by homologous recombination (HR), to characterize the mechanism underlying IPMK-regulated mRNA export. IPMK depletion or catalytic inactivation selectively decreases the nuclear export of RAD51 mRNA, and RAD51 protein abundance, thereby impairing HR. Recognition of a sequence motif in the untranslated region of RAD51 transcripts by the mRNA export factor ALY requires IPMK. Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), an IPMK product, restores ALY recognition in IPMK-depleted cell extracts, suggesting a mechanism underlying transcript selection. Our findings implicate IPMK in a transcript-selective mRNA export pathway controlled by phosphoinositide turnover that preserves genome integrity in humans. We used gene expression profiling to compare the abundance of cytoplasmic RNAs after IPMK depletion
Project description:Messenger (m)RNA export from the nucleus is essential for eukaryotic gene expression. Here, we identify a transcript-selective nuclear export mechanism affecting certain human transcripts, enriched for functions in genome duplication and repair, controlled by inositol polyphosphate multikinase (IPMK), an enzyme catalyzing inositol polyphosphate and phosphoinositide turnover. We studied transcripts encoding RAD51, a protein essential for DNA repair by homologous recombination (HR), to characterize the mechanism underlying IPMK-regulated mRNA export. IPMK depletion or catalytic inactivation selectively decreases the nuclear export of RAD51 mRNA, and RAD51 protein abundance, thereby impairing HR. Recognition of a sequence motif in the untranslated region of RAD51 transcripts by the mRNA export factor ALY requires IPMK. Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), an IPMK product, restores ALY recognition in IPMK-depleted cell extracts, suggesting a mechanism underlying transcript selection. Our findings implicate IPMK in a transcript-selective mRNA export pathway controlled by phosphoinositide turnover that preserves genome integrity in humans.
Project description:Inositol polyphosphate multikinase (IPMK), a key enzyme in the inositol polyphosphate (IP) metabolism, is a pleiotropic signaling factor involved in major biological events, including transcriptional control. In the yeast, IPMK and its IP products promote the activity of the chromatin-remodeling complex SWI/SNF, which plays a critical role in gene expression by regulating chromatin accessibility. However, the direct link between IPMK and chromatin remodelers remains unclear, raising a question on how IPMK contributes to the transcriptional regulation in mammals. By employing unbiased screening approaches and in vivo/in vitro immunoprecipitations, here we demonstrated that mammalian IPMK physically interacts with the SWI/SNF complex by directly binding to SMARCB1, BRG1, and SMARCC1. Furthermore, we identified the specific domains required for the IPMK-SMARCB1 binding. Notably, using the CUT&RUN and ATAC-seq assays, we discovered that IPMK co-localizes with BRG1 and regulates BRG1 localization as well as BRG1-mediated chromatin accessibility in a genome-wide manner in mouse embryonic stem cells. Finally, our mRNA-seq analyses revealed that IPMK and SMARCB1 regulate the expression of a common gene set, validating a functional link between IPMK and the SWI/SNF complex. Together, these findings show that IPMK regulates promoter-targeting of the SWI/SNF complex and thereby contributes to SWI/SNF-meditated chromatin accessibility, transcription, and differentiation.
Project description:Activated Foxp3+ regulatory T (Treg) cells differentiate into effector Treg (eTreg) cells to maintain peripheral immune homeostasis and tolerance. T cell receptor (TCR)-mediated induction and regulation of store-operated Ca2+ entry (SOCE) is essential for eTreg cell differentiation and function. However, SOCE regulation in Treg cells remains unclear. Here we show that inositol polyphosphate multikinase (IPMK), which generates inositol tetrakisphosphate and inositol pentakisphosphate, is a pivotal regulator of Treg cell differentiation downstream of TCR signaling. IPMK is highly expressed in TCR-stimulated Treg cells and promotes a TCR-induced Treg cell program. IPMK-deficient Treg cells display aberrant T cell activation and impaired differentiation into RORγt+ Treg cells, and tissue-resident Treg cells. Mechanistically, IPMK controls the generation of higher-order inositol phosphates, thereby promoting Ca2+ mobilization and Treg cell effector functions. Our findings identify IPMK as a critical regulator of TCR-mediated Ca2+ influx and highlight the importance of IPMK in Treg cell-mediated immune homeostasis.
Project description:This trial will evaluate the combination treatment of established chemotherapy regimen mFOLFOX6 with Selinexor, an oral Selective Inhibitor Of Nuclear Export, in patients with metastatic Colorectal Cancer. The purpose is to determine the maximum tolerated dose (MTD) of selinexor in combination with mFOLFOX6.
Project description:Intestinal homeostasis is dynamically coordinated by various types of epithelial cells fulfilling their specific functions. Tuft cells as chemosensory cells have emerged as key players of the host response, such as innate immunity. Tuft cells are also critical for the restoration of intestinal architecture upon damage, thereby contributing to inflammatory bowel diseases (IBDs) characterized by defective intestinal barrier integrity. However, the molecular mechanism of how tuft cell homeostasis is controlled remains obscure. Recent studies have identified single-nucleotide polymorphisms in the inositol polyphosphate multikinase (IPMK) gene associated with IBD predisposition. IPMK, an essential enzyme for inositol phosphate metabolism, has been known to mediate major biological events such as growth. To investigate the functional significance of IPMK in gut epithelium, we generated intestinal epithelial cell (IEC)-specific Ipmk knockout (IPMKΔIEC) mice. Whereas IPMKΔIEC mice developed normally and showed no intestinal abnormalities during homeostasis, Ipmk deletion aggravated dextran sulfate sodium (DSS)-induced colitis, with higher clinical colitis scores, and elevated epithelial barrier permeability. Surprisingly, no apparent defects in epithelial growth signaling pathway and inflammation were found in DSS-challenged, IPMK-deficient colons. Rather, Ipmk deletion led to a significant decrease in the number of tuft cells without influencing other intestinal epithelial cells. Ipmk deletion in the gut epithelium was found to reduce choline acetyltransferase but not cytokines (e.g., IL-25), suggesting selective loss of cholinergic signaling. Single-cell RNA-sequencing of mouse colonic tuft cells (EpCAM+/Siglec F+) and immunohistochemistry revealed three populations of tuft cells and further showed that, in IPMKΔIEC mice, a transcriptionally inactive tuft club cell population was markedly expanded, and neuronal-related tuft cells were relatively decreased, supporting the abnormal development of tuft cells without IPMK functions. Thus, IPMK acts as a physiological determinant of colonic tuft cell homeostasis, thereby mediating tissue regeneration upon injury.
Project description:The yeast Snf1p/AMP-activated kinase (AMPK) maintains energy homeostasis, controlling metabolic processes and glucose derepression in response to nutrient levels and environmental cues. Under conditions of nitrogen or glucose limitation, Snf1p regulates pseudohyphal growth, a morphological transition characterized by the formation of extended multicellular filaments. During pseudohyphal growth, Snf1p is required for wild-type levels of inositol polyphosphate (InsP), soluble phosphorylated species of the six-carbon cyclitol inositol that function as conserved metabolic second messengers. InsP levels are established through the activity of a family of inositol kinases, including the inositol polyphosphate kinase Kcs1p, which principally generates pyrophosphorylated forms of InsP7 and InsP8. Here, we report that Snf1p regulates Kcs1p, affecting Kcs1p phosphorylation and inositol kinase activity. A snf1 kinase-defective mutant exhibits decreased Kcs1p phosphorylation, and Kcs1p is phosphorylated in vivo at Ser residues 537 and 646 during pseudohyphal growth. By in vitro analysis, Snf1p directly phosphorylates Kcs1p, predominantly at amino acids 537 and 646. A yeast strain carrying kcs1 encoding Ser-to-Ala point mutations at these residues (kcs1-S537A,S646A) shows elevated levels of pyrophosphorylated InsP7, comparable to InsP7 levels observed upon deletion of SNF1. The kcs1-S537A,S646A mutant exhibits decreased pseudohyphal growth, invasive growth, and cell elongation. Transcriptional profiling indicates extensive perturbation of metabolic pathways in kcs1-S537A,S646A. Growth of kcs1-S537A,S646A is affected on medium containing glycerol and antimycin A, consistent with decreased Snf1p signaling. This work identifies Snf1p phosphorylation of Kcs1p, collectively highlighting the interconnectedness of AMPK activity and InsP signaling in coordinating nutrient availability, energy homoeostasis, and cell growth.
Project description:In eukaryotes, inositol polyphosphates perform essential metabolic and signaling functions. Using human fungal pathogen Cryptococcus neoformans as a model, we created mutants in three inositol polyphosphates kinases: Arg1, Ipk1 and Kcs1. Each of the mutants produces a unique repertoire of inositol polyphosphates, different from the wild type strain. Comparative phenotypic and transcriptome analyses of wild type and mutant strains indicates that inositol polyphosphate PP-IP5 (IP7) is the key regulator of gene expression, fitness and virulence in C. neoformans.
Project description:Nuclear export of mRNA is essential for eukaryotic cells to establish the flow of genetic information in the nucleus to protein synthesis in the cytoplasm. This transport process is highly regulated to ensure efficient and accurate gene expression. Viruses are well known for their ability to manipulate host gene expression. Here, we report that ORF10 of Kaposi’s sarcoma associated herpesvirus (KSHV), a nuclear DNA virus, inhibits mRNA export in a transcript-selective manner to control cellular gene expression. This export inhibitory effect of ORF10 requires the interaction with an RNA export factor, Rae1. Genome-wide analysis by RNA sequencing revealed the subset of cellular mRNAs whose nuclear export is blocked by ORF10. The 3’ untranslated regions (3’ UTRs) of ORF10-targeted transcripts confer their sensitivity to nuclear export inhibition by ORF10. In the context of KSHV replication, the interaction of ORF10 with Rae1 is important for the virus to express viral genes and produce infectious virions. Our results suggest that a nuclear replicating DNA virus can selectively interfere with RNA export through Rae1 to restrict host gene expression for optimal viral replication.