Project description:The homeodomain transcription factor, Pdx-1, has important roles in pancreatic development and β-cell function and survival. In the present study, we demonstrate that adenovirus-mediated overexpression of Pdx-1 in rat or human islets also stimulates cell replication. Moreover, co-overexpression of Pdx-1 with another homeodomain transcription factor, Nkx6.1, has an additive effect on proliferation compared to either factor alone, implying discrete activating mechanisms. Consistent with this, Nkx6.1 stimulates mainly β-cell proliferation, whereas Pdx-1 stimulates both α- and β-cell proliferation. Furthermore, cyclins D1/D2 are upregulated by Pdx-1 but not by Nkx6.1, and inhibition of cdk4 blocks Pdx-1- but not Nkx6.1-stimulated islet cell proliferation. Genes regulated by Pdx-1 and not Nkx6.1 were identified by microarray analysis. Two members of the transient receptor potential cation (TRPC) channel family, TRPC3 and TRPC6, are upregulated by Pdx-1 overexpression, and siRNA-mediated knockdown of TRPC3/6 or TRPC6 alone inhibits Pdx-1-induced but not Nkx6.1-induced islet cell proliferation. Pdx-1 also stimulates ERK1/2 phosphorylation, an effect partially blocked by knockdown of TRPC3/6, and blockade of ERK1/2 activation with a MEK1/2 inhibitor partially impairs Pdx-1-stimulated proliferation. These studies define a pathway by which overexpression of Pdx-1 activates islet cell proliferation that is distinct from and additive to a pathway activated by Nkx6.1. We identified genes that were upregulated or downregulated at 48 h with Pdx-1 overexpression as compared to untreated and βgal controls.
Project description:The homeodomain transcription factor, Pdx-1, has important roles in pancreatic development and M-NM-2-cell function and survival. In the present study, we demonstrate that adenovirus-mediated overexpression of Pdx-1 in rat or human islets also stimulates cell replication. Moreover, co-overexpression of Pdx-1 with another homeodomain transcription factor, Nkx6.1, has an additive effect on proliferation compared to either factor alone, implying discrete activating mechanisms. Consistent with this, Nkx6.1 stimulates mainly M-NM-2-cell proliferation, whereas Pdx-1 stimulates both M-NM-1- and M-NM-2-cell proliferation. Furthermore, cyclins D1/D2 are upregulated by Pdx-1 but not by Nkx6.1, and inhibition of cdk4 blocks Pdx-1- but not Nkx6.1-stimulated islet cell proliferation. Genes regulated by Pdx-1 and not Nkx6.1 were identified by microarray analysis. Two members of the transient receptor potential cation (TRPC) channel family, TRPC3 and TRPC6, are upregulated by Pdx-1 overexpression, and siRNA-mediated knockdown of TRPC3/6 or TRPC6 alone inhibits Pdx-1-induced but not Nkx6.1-induced islet cell proliferation. Pdx-1 also stimulates ERK1/2 phosphorylation, an effect partially blocked by knockdown of TRPC3/6, and blockade of ERK1/2 activation with a MEK1/2 inhibitor partially impairs Pdx-1-stimulated proliferation. These studies define a pathway by which overexpression of Pdx-1 activates islet cell proliferation that is distinct from and additive to a pathway activated by Nkx6.1. We identified genes that were upregulated or downregulated at 48 h with Pdx-1 overexpression as compared to untreated and M-NM-2gal controls. We set up a microarray using primary rat islets that were left untreated or transduced with adenoviruses overexpressing M-NM-2gal or Pdx-1 for 48 h.
Project description:Adult pancreatic β cells are refractory to proliferation, a roadblock for the treatment of insulin-deficient diabetes. Consumption of energy-dense Western or high-fat diet (HFD) triggers mild adaptive β cell mass expansion to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. Here we show that Toll-like receptors (TLR) 2/TLR4 act as molecular “brakes” for diet-induced β cell replication in both mice and humans. The combined loss of TLR2/TLR4, but not individually, dramatically increases facultative β, not α, cell replication, leading to progressively enlarged islet mass and hyperinsulinemia in diet-induced obesity. Mechanistically, loss of TLR2/TLR4 increases β cell proliferation and nuclear abundance of Cyclin D2 and CDK4 in an extracellular signal-regulated kinase (ERK)-dependent manner. These data reveal a novel mechanism governing adaptive β cell mass expansion in diet-induced obesity and suggest that selective targeting of TLR2/TLR4 pathways may hold promise for reversing β cell failure in diabetic patients.
Project description:Oxaliplatin(OXA) chemotherapy protocols are used in treatment of cancers like colorectal (CRC) and pancreatic cancer. OXA causes peripheral neuropathy which is considered treatment limiting factor. In recent studies, it shows that omeprazole(OME) has antioxidant effect and can inhibit organic cation transporter 2 (OCT2) in kidney. So OME can protect against peripheral neuropathy induced by OXA through oxidative stress . Also OME activates extracellular-signal-regulated kinase(ERK) / mitogen activated protein kinase ( MAPK) pathway, so improves demyelinating symptoms.
Project description:We aimed to understand the functional roles of islet cellular oscillators under diabetic conditions and during β-cell regeneration. We assessed diurnal regulation of β-cell proliferation and the transcriptional landscape in α- and residual β-cells following β-cell ablation in Insulin-rtTA/TET-DTA mice that simultaneously expressed α- and β-cell specific fluorescent reports. The mouse pancreatic islets were isolated over 24-h with 4-h interval, followed by separation of α- and β- cells using FACS sorting, RNA extraction and RNA sequencing. Acute hyperglycemia and loss of β-cell mass perturbed absolute expression levels and temporal transcriptome profiles in residual β-cells, whereas in neighboring α-cells only changes in temporal profiles were observed. Strikingly, compensatory regeneration of β-cells exhibited circadian rhythmicity. In arrhythmic Bmal1 deficient mice, massive β-cell ablation led to aggravated hyperglycemia, hyperglucagonemia and a fatal diabetes. No compensatory proliferation of β-cells was observed in arrhythmic mice, suggesting an essential role of circadian clocks in β-cell regeneration.
Project description:β cell proliferation rates decline with age and adult β cells have limited self-duplicating activity for regeneration, which predisposes to diabetes. Here we show that, among MYC family members, Mycl was expressed preferentially in proliferating immature endocrine cells. Genetic ablation of Mycl caused a modest reduction in cell proliferation of pancreatic endocrine cells in neonatal mice. By contrast, systemic expression of Mycl in mice stimulated proliferation in pancreatic islet cells and resulted in expansion of pancreatic islets without forming tumors in other organs. Single-cell RNA sequencing and genetic tracing experiments revealed that the expression of Mycl provoked transcription signatures associated with immature proliferating endocrine cells and stimulated self-duplication in adult hormone-expressing cells. The expanded hormone-expressing cells ceased proliferation but persisted after withdrawal of Mycl expression. Remarkably, a subset of the expanded α cells gave rise to insulin-producing cells after the withdrawal. Moreover, transient Mycl expression in vivo was sufficient to normalize increased blood glucose levels in diabetic mice evoked by chemical ablation of β cells. In vitro expression of Mycl similarly provoked active replication without inducing apoptosis in adult hormone-expressing islet cells, even those from aged mice. Furthermore, the expanded islet cells functioned in diabetic mice after transplantation. Finally, we show that MYCL stimulated self-duplication of human adult cadaveric islet cells. Collectively, these results demonstrate that sole induction of Mycl expands adult β cells both in vivo and in vitro. Moreover, islet cell-specific reprogramming via transient Mycl transduction elicits endogenous expansion of insulin-producing cells in adult pancreas through both self-duplication of β cells and transdifferentiation ofα cells into insulin-producing cells, which may provide a regenerative strategy of β cells.
Project description:β cell proliferation rates decline with age and adult β cells have limited self-duplicating activity for regeneration, which predisposes to diabetes. Here we show that, among MYC family members, Mycl was expressed preferentially in proliferating immature endocrine cells. Genetic ablation of Mycl caused a modest reduction in cell proliferation of pancreatic endocrine cells in neonatal mice. By contrast, systemic expression of Mycl in mice stimulated proliferation in pancreatic islet cells and resulted in expansion of pancreatic islets without forming tumors in other organs. Single-cell RNA sequencing and genetic tracing experiments revealed that the expression of Mycl provoked transcription signatures associated with immature proliferating endocrine cells and stimulated self-duplication in adult hormone-expressing cells. The expanded hormone-expressing cells ceased proliferation but persisted after withdrawal of Mycl expression. Remarkably, a subset of the expanded α cells gave rise to insulin-producing cells after the withdrawal. Moreover, transient Mycl expression in vivo was sufficient to normalize increased blood glucose levels in diabetic mice evoked by chemical ablation of β cells. In vitro expression of Mycl similarly provoked active replication without inducing apoptosis in adult hormone-expressing islet cells, even those from aged mice. Furthermore, the expanded islet cells functioned in diabetic mice after transplantation. Finally, we show that MYCL stimulated self-duplication of human adult cadaveric islet cells. Collectively, these results demonstrate that sole induction of Mycl expands adult β cells both in vivo and in vitro. Moreover, islet cell-specific reprogramming via transient Mycl transduction elicits endogenous expansion of insulin-producing cells in adult pancreas through both self-duplication of β cells and transdifferentiation ofα cells into insulin-producing cells, which may provide a regenerative strategy of β cells.
Project description:Pancreatic islet endocrine cell and endothelial cell (EC) interactions mediated by vascular endothelial growth factor-A (VEGF-A) signaling are important for islet endocrine cell differentiation and the formation of highly vascularized islets. To dissect how VEGF-A signaling modulates intra-islet vasculature and innervation, islet microenvironment, and β cell mass, we transiently increased VEGF-A production by β cells. VEGF-A induction dramatically increased the number of intra-islet ECs but led to β cell loss. After withdrawal of the VEGF-A stimulus, β cell mass, function, and islet structure normalized as a result of a robust, but transient, burst in proliferation of pre-existing β cells. Bone marrow-derived macrophages (MΦs) recruited to the site of β cell injury were crucial for the β cell proliferation, which was independent of pancreatic location and circulating factors such as glucose. Identification of the signals responsible for the proliferation of adult, terminally differentiated β cells will improve strategies aimed at β cell regeneration and expansion. Examination of RNA profiles from isolated whole islets from RIP-rtTA; TetO-VEGF-A mice with no doxycycline (Dox) treatment (3 samples) and after 1 week of Dox (3 sample); and islet-derived macrophages (3 samples) and endothelial cells (3 samples) isolated from dispersed purified islets from RIP-rtTA; TetO-VEGF-A mice after 1 week Dox treatment by fluorescence-activated cell sorting using antibodies against CD11b and CD31, respectively.