Project description:Application of genome-scale 'omics approaches to dissect subcellular pathways and regulatory networks governing the fast-growing response of Synechococcus sp. PCC 7002 response to variable irradience levels.
Project description:Application of genome-scale 'omics approaches to dissect subcellular pathways and regulatory networks governing the fast-growing response of Synechococcus sp. PCC 7002 response to variable irradience levels. We employed controlled cultivation and next-generation sequencing technology to identify transcriptional responses of euryhaline unicellular cyanobacterium Synechococcus sp. PCC 7002 grown under steady state conditions at six irradiance levels ranging from 33 to 760 µmol photons m-2 sec-1.
Project description:Cyanobacteria are valuable organisms for studying the physiology of photosynthesis and carbon fixation as well as metabolic engineering for the production of fuels and chemicals. This work describes a novel counter selection method for the cyanobacterium Synechococcus sp. PCC 7002 based on organic acid toxicity. The organic acids acrylate, 3-hydroxypropionate, and propionate were shown to be inhibitory towards PCC 7002 and other cyanobacteria at low concentrations. Inhibition was overcome by a loss of function mutation in the gene acsA. Loss of AcsA function was used as a basis for an acrylate counter selection method. DNA fragments of interest were inserted into the acsA locus and strains harboring the insertion were isolated on selective medium containing acrylate. This methodology was also used to introduce DNA fragments into a pseudogene, glpK. Application of this method will allow for more advanced genetics and engineering studies in PCC 7002 including the construction of markerless gene deletions and insertions. The acrylate counter-selection could be applied to other cyanobacterial species where AcsA activity confers acrylate sensitivity (e.g. Synechocystis sp. PCC 6803).
Project description:Primary productivity of open ocean environments, such as those inhabited by marine picocyanobacteria Synechococcus sp.WH8102, are often limited by low inorganic phosphate (P). To observe how this organism copes with P starvation, we constructed a full genome microarray and examined differences in gene expression under P-limited and P-replete growth conditions. To determine the temporal nature of the responses, comparisons were made for cells newly entered into P-stress (at a time point corresponding to the induction of extracellular alkaline phosphatase activity) and a later time point (late log phase). In almost all instances the P starvation response was transitory, with 36 genes showing significant upregulation (>log2 fold) while 23 genes were highly downregulated at the early time point; however, these changes in expression were maintained for only five of the upregulated genes. Knockout mutants were constructed for genes SYNW0947 or SYNW0948, comprising a two component regulator hypothesized to play a key role in regulating the response to P-limitation. A high degree of overlap in the sets of genes affected by P-limited conditions and in the knockout mutants supports this hypothesis; however there is some indication that other regulators may play a role in this response in Synechococcus sp. WH8102. Consistent with what has been observed in many other cyanobacteria, the Pho regulon of this strain is comprised largely of genes for alkaline phosphatases, P transport or P metabolism. Interestingly, however, the exact composition and arrangement of the Pho regulon appears highly variable in marine cyanobacteria.
Project description:In this study, we explored the use of BONCAT in Synechococcus sp. – a globally important cyanobacteria. We characterized the growth and microscopically quantified HPG uptake under a range of HPG concentrations in marine Synechococcus sp. Further, we examined changes in protein expression of Synechococcus sp. grown under normal and nitrate-stressed conditions relative to a non-HPG control.
Project description:Cyanobacteria fix atmospheric CO2 to biomass and through metabolic engineering can also act as photosynthetic cell factories for sustainable productions of fuels and chemicals. The Calvin cycle is the primary pathway for CO2 fixation in cyanobacteria, algae and C3 plants, and several studies have shown that overexpression of a cyanobacterial Calvin cycle enzyme, bifunctional sedoheptulose-1,7-bisphosphatase/fructose-1,6-bisphosphatase (hereafter BiBPase), enhances CO2 fixation in both plants and algae, although its impact on cyanobacteria has not yet been rigorously studied. Here, we show that overexpression of BiBPase enhanced growth, cell size, and photosynthetic O2 evolution of the cyanobacterium Synechococcus sp. PCC 7002 in an environment with elevated CO2 concentration. Biochemical analysis, immunodetection, and proteomic analysis revealed that overexpression of BiBPase considerably elevated the cellular activities of two rate-limiting enzymes in the Calvin cycle, namely ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and aldolase, while it repressed several enzymes involved in the respiratory carbon metabolism (e.g. glycolysis and the oxidative pentose phosphate pathway) including glucose-6-phosphate dehydrogenase. Concomitantly, the content of glycogen was significantly reduced while the extracellular carbohydrate content increased. These results indicate that overexpression of BiBPase leads to global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002, promoting photosynthetic carbon fixation and repressing the respiratory carbon catabolism, while altering carbohydrate partitioning.
Project description:Marine Synechococcus, together with Prochlorococcus, contribute to a significant proportion of the primary production on Earth. The spatial distribution of these two groups of marine picocyanobacteria depends on different factors such as nutrients availability or temperature. Some Synechococcus ecotypes thrive in mesotrophic and moderately oligotrophic waters, where they exploit both oxidized and reduced forms of nitrogen. Here, we present a comprehensive study, which includes transcriptomic and proteomic analyses of the response of Synechococcus sp. strain WH7803 to nanomolar concentrations of nitrate, compared to ammonium or nitrogen starvation. We found that Synechococcus has a specific response to nanomolar nitrate concentration that differs to the response showed under nitrogen starvation or the presence of standard concentrations of either ammonium or nitrate. This fact suggests that the particular response to the uptake of nanomolar concentration of nitrate could be an evolutionary advantage for marine Synechococcus against Prochlorococcus in the natural field.
Project description:Cyanobacteria are valuable organisms for studying the physiology of photosynthesis and carbon fixation as well as metabolic engineering for the production of fuels and chemicals. This work describes a novel counter selection method for the cyanobacterium Synechococcus sp. PCC 7002 based on organic acid toxicity. The organic acids acrylate, 3-hydroxypropionate, and propionate were shown to be inhibitory towards PCC 7002 and other cyanobacteria at low concentrations. Inhibition was overcome by a loss of function mutation in the gene acsA. Loss of AcsA function was used as a basis for an acrylate counter selection method. DNA fragments of interest were inserted into the acsA locus and strains harboring the insertion were isolated on selective medium containing acrylate. This methodology was also used to introduce DNA fragments into a pseudogene, glpK. Application of this method will allow for more advanced genetics and engineering studies in PCC 7002 including the construction of markerless gene deletions and insertions. The acrylate counter-selection could be applied to other cyanobacterial species where AcsA activity confers acrylate sensitivity (e.g. Synechocystis sp. PCC 6803). Cultures were grown in medium modified with 5mM acrylic acid at pH 8 and compared to cultures grown in unmodified medium. Samples were processed in duplicate.